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ABSTRACT 

Prior thesis work has demonstrated the possibility of ex-

tending the flight time of military Small Unmanned Aerial 

Vehicles (SUAV) by 200% with the implementation of thin-

film photovoltaic (TFPV) cells.  In this thesis, we inves-

tigate how thin-film photovoltaic cells, made out of Copper 

Indium Gallium Di-Selenide (CIGS) semiconductor materials 

and mounted on the wings of the Raven RQ-11B SUAV, provide 

sufficient electrical power to fully operate the UAV for 

extended periods of time.  This research focuses on extend-

ing the flight time of the Raven RQ-11B and on minimizing 

its sole dependence on lithium-ion batteries.  This re-

search will also demonstrate that increasing the size of 

the wings, adding a DC to DC power converter, and using a 

Maximum Power Point Tracker (MPPT) will enable the Raven 

RQ-11B to keep its lithium-ion battery charging continu-

ously, while operating under varying daylight conditions.  

Additionally, this research will investigate the advantage 

of enabling systems on the ground to “self-charge.”  This 

will enable tactical units to operate in any field, to in-

clude areas where power sources are unavailable. 



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I. INTRODUCTION ............................................1 
A. BACKGROUND .........................................1 
B. OBJECTIVE ..........................................2 
C. RELATED WORK .......................................3 
D. APPROACH ...........................................5 
E. ORGANIZATION .......................................6 

II. RAVEN RQ-11B UAV ........................................9 
A. HISTORY OF THE RAVEN PROGRAM .......................9 
B. ACQUISITION STRATEGY ..............................14 

1. Acquisition and Cost .........................14 
2. Training .....................................15 

C. SYSTEM CHARACTERISTICS AND COMPONENTS .............17 
1. System Composition ...........................17 
2. Performance ..................................19 
3. Payload ......................................20 
4. Navigation ...................................21 
5. Engine .......................................21 
6. Ground Control Unit ..........................22 
7. Portability ..................................22 

D. SYSTEM LIMITATIONS ................................22 
1. Battery Life .................................22 
2. Altitude .....................................23 
3. Wind Speed ...................................23 
4. Temperature ..................................23 

III. CIGS TFPV CELLS ........................................25 
A. INTRODUCTION ......................................25 
B. SOLAR SPECTRUM AND SOLAR RADIATION ................26 
C. SOLAR CELLS .......................................28 

1. P-N Junctions ................................28 
2. Band Gap .....................................29 
3. Photovoltaic Effect ..........................30 
4. Solar Cell Structure .........................30 
5. Thin-Film Photovoltaic Cells .................31 

D. CIGS AND SILICON ..................................33 
E. CIGS STRUCTURE ....................................33 
F. CIGS DEGRADATION ..................................35 

IV. POWER INTEGRATION ......................................37 
A. DC-DC POWER CONVERTER .............................37 
B. MAXIMUM POWER POINT TRACKER .......................39 
C. BALANCER CHARGER ..................................40 
D. LITHIUM-ION BATTERIES .............................41 



 viii

V. DESIGN AND ASSEMBLY ....................................44 
A. WING MODIFICATION AND CONSTRUCTION ................44 
B. SOLAR PANEL DESIGN ................................49 

1. Area vs. Power ...............................49 
2. Solar Cell Arrangement .......................50 

C. CUTTING AND HANDLING OF SOLAR CELLS ...............53 
1. Handling .....................................53 
2. Cutting ......................................54 

D. LAMINATION AND ENCAPSULATION ......................55 
E. WIRING AND CONNECTIONS ............................58 
F. MAXIMUM POWER POINT TRACKER .......................62 
G. BALANCER CHARGER ..................................65 
H. SYSTEM INTEGRATION ................................66 

VI. TEST AND ANALYSIS ......................................69 
A. LABVIEW ...........................................69 
B. REFERENCE SOLAR CELL ..............................73 
C. BATTERY CAPACITY TESTS ............................73 
D. ENERGY CALCULATIONS ...............................75 

1. Fully Charged Battery ........................75 
2. Raven’s Energy Consumption ...................76 
3. Load Energy Consumption ......................77 

E. BATTERY ENDURANCE TESTS ...........................80 
1. Raven’s Energy Consumption ...................80 
2. Load Energy Consumption ......................83 

F. BATTERY ENDURANCE CALCULATIONS WITH SOLAR PANEL ...84 
1. Load with Solar Panel ........................84 
2. Raven with Solar Panel (100%-55%) ............87 
3. Raven with Solar Panel (100%-65%) ............90 
4. Raven with Solar Panel (100%-70%) ............93 

G. BATTERY ENDURANCE TESTS WITH SOLAR PANEL ..........96 
1. Load with Solar Panel ........................96 
2. Raven with Solar Panel (100%-55%) ...........100 
3. Raven with Solar Panel (100%-65%) ...........102 
4. Raven with Solar Panel (100%-70%) ...........105 

H. OBSERVATIONS .....................................106 
1. Modified Wing ...............................106 
2. Current Test ................................107 
3. Daily Energy Variations .....................108 
4. Temperature .................................109 
5. MPPT Fluctuations ...........................110 
6. Weight ......................................110 
7. Charging Other Batteries ....................111 
8. Specific Energy Calculation .................113 

I. FLIGHT TEST RESULTS ..............................114 
J. COST ESTIMATE ....................................114 



 ix

VII.  CONCLUSIONS ..........................................117 
A. RECOMMENDATIONS ..................................119 

1. Eliminate Boost Converter ...................120 
2. Solar Design for Original Wing ..............120 
3. New Technology CIGS and Power Electronics ...121 

LIST OF REFERENCES .........................................123 

INITIAL DISTRIBUTION LIST ..................................129 

 



 x

THIS PAGE INTENTIONALLY LEFT BLANK  



 xi

LIST OF FIGURES 

Figure 1. Sunrise I, 1974 (From [1]).......................3 
Figure 2. QinetiQ’s Zephyr Solar UAV (From [2])............4 
Figure 3. FQM-151 Pointer (From [7]).......................9 
Figure 4. Flashlight SUAV (From [9])......................10 
Figure 5. Raven Block I UAV (From [9])....................11 
Figure 6. Raven Block II (From [9]).......................12 
Figure 7. Raven RQ-11B SUAV (From [12])...................13 
Figure 8. Preflight checks of the Raven UAV (From [15])...16 
Figure 9. RAVEN RQ-11B SYSTEM (From [16]).................18 
Figure 10. Raven RQ-11B Parts Breakdown (From [16])........19 
Figure 11. Day and Night Video Imagery (From [8])..........21 
Figure 12. CIGS TFPV Cell (From [20])......................26 
Figure 13. Air Mass (After [23])...........................27 
Figure 14. Band Gap Diagram (From [24])....................29 
Figure 15. Solar Cell Structure (From [25])................31 
Figure 16. CIGS Cell Structure (After[28]).................34 
Figure 17. Boost Converter Schematic (After [31])..........38 
Figure 18. Raven SUAV Wing Dimensions......................45 
Figure 19. Modified Wing Dimensions........................45 
Figure 20. Original vs. Modified Raven Wings...............46 
Figure 21. Tooling to Cast the Foam (From [37])............47 
Figure 22. Cast Clamped to Pour Foam (From [37])...........48 
Figure 23. Foam Core (From [37])...........................48 
Figure 24. Final Modified Wing.............................49 
Figure 25. CIGS TFPV Cells from Global Solar (From [38])...51 
Figure 26. Solar Cell Arrangement..........................52 
Figure 27. Cutting CIGS Solar Cell.........................55 
Figure 28. CIGS Module Cross-Section (From [38])...........56 
Figure 29. Carpet Protection Film (From [39])..............57 
Figure 30. CIGS Cell Lamination............................58 
Figure 31. Copper Conductor Tape...........................60 
Figure 32. Wire Glue Used on Solar Cell....................61 
Figure 33. Solar Panel Wiring..............................61 
Figure 34. Solar Panel.....................................62 
Figure 35. GV26-4 Boost Solar Charge Controller............63 
Figure 36. Integrated Circuit on Fuselage of Raven RQ-11B..65 
Figure 37. Ultra-Balancer Charger..........................66 
Figure 38. System Configuration............................67 
Figure 39. Test Equipment Connection.......................69 
Figure 40. LABVIEW Front Panel.............................71 
Figure 41. LABVIEW Block Diagram...........................72 
Figure 42. Reference Solar Cell (From [5]).................73 
Figure 43. High Power Resistors............................78 



 xii

Figure 44. Power Consumption 100% to 55% Raven.............80 
Figure 45. Power Consumption 100% to 65% Raven.............82 
Figure 46. Power Consumption 100% to 70% Raven.............82 
Figure 47. Power Consumption 100% to 55% Similar Load......83 
Figure 48. IV Curve Plot for Wing Solar Panel..............84 
Figure 49. Mobile Laboratory...............................96 
Figure 50. Power Input to Load w/SP Test...................98 
Figure 51. Power Consumption Load w/ Solar Panel...........99 
Figure 52. Power Input to Raven w/SP 100%-55% Throttle 

Test...........................................101 
Figure 53. Power Consumption Raven w/SP 100%-55% Throttle.102 
Figure 54. Power Input to Raven w/SP 100%-65% Throttle 

Test...........................................103 
Figure 55. Power Consumption to Raven w/SP 100%-65% 

Throttle.......................................104 
Figure 56. Power Input Raven w/SP 100-70% Throttle Test...105 
Figure 57. Power Consumption Raven w/SP 100%-70% Throttle.106 
Figure 58. Current Test Connection........................108 
 



 xiii

LIST OF TABLES 

Table 1. Raven System Composition (From [16])............17 
Table 2. Raven Specifications (From [16])................20 
Table 3. Summaries Thin Cells Efficiencies (From [30])...36 
Table 4. Raven RQ-11B Wing Dimensions....................45 
Table 5. GV24-6 Boost Specifications (After [41])........64 
Table 6. Raven Battery Capacity Bench Test...............74 
Table 7. Energy of a Fully Charged Battery...............76 
Table 8. Energy and Time Used at 100% and 55% throttle...76 
Table 9. Energy Used at 100% and 65% throttle............77 
Table 10. Energy Used at 100% and 70% throttle............77 
Table 11. Battery Capacity Similar Load...................79 
Table 12. Energy Used and Battery Endurance w/ Similar 

Load............................................79 
Table 13. Calculated vs. Actual Time (100-55%)............80 
Table 14. Calculated vs. Actual Time (100-65%)............81 
Table 15. Calculated vs. Actual Time (100-70%)............81 
Table 16. Calculated vs. Actual Time Similar Load.........83 
Table 17. Battery Endurance Calculation Load w/SP (17Wh)..85 
Table 18. Battery Endurance Calculation Load w/SP (12Wh)..86 
Table 19. Battery Endurance w/Load........................87 
Table 20. Battery Endurance Calculation Raven w/SP (100%-

55% Throttle) 12Wh Energy Input.................88 
Table 21. Battery Endurance Calculation Raven w/SP (100%-

55% Throttle)  17Wh Energy Input................89 
Table 22. Battery Endurance Raven w/SP (100%-55%).........90 
Table 23. Battery Endurance Calculation Raven w/SP (100%-

65% Throttle) 12Wh Energy Input.................91 
Table 24. Battery Endurance Calculation Raven w/SP (100%-

65% Throttle) 17Wh Energy Input.................92 
Table 25. Battery Endurance Raven w/SP (100%-65%).........93 
Table 26. Battery Endurance Calculation Raven w/SP (100%-

70% Throttle) 12Wh Energy Input.................94 
Table 27. Battery Endurance Calculation Raven w/SP (100%-

70% Throttle) 17Wh Energy Input.................95 
Table 28. Battery Endurance Raven w/SP (100%-70%).........95 
Table 29. Battery Endurance Calculation Load w/SP Test 1..97 
Table 30. Battery Endurance Calculation Load W/SP Test 2..98 
Table 31. Calculated vs. Actual Time.....................100 
Table 32. Actual Time and Improvement....................102 
Table 33. Actual Time Results and Improvement............104 
Table 34. Actual Time and Improvement....................106 
Table 35. Final Added Weight.............................111 
Table 36. Li-po Battery Recharge Time....................112 



 xiv

Table 37. Solar Modification Cost........................115 
Table 38. Summary of Testing Results.....................119 
 



 xv

EXECUTIVE SUMMARY 

Since 2006, the Raven RQ-11B Unmanned Aerial Vehicle (UAV) 

has become the preferred miniature unmanned aerial vehicle 

(MUAV) used by the U.S. Army, USSOCOM, U.S. Marines, U.S. 

Air Force, and U.S. allies.  The Raven unmanned aerial ve-

hicle (UAV) characterizes itself by providing units with 

real-time color or infrared imagery, lightweight portabil-

ity, long-range transmission, manual and programmable op-

eration, etc., which make this type of aircraft a tremen-

dous asset to units conducting low-altitude reconnaissance 

and surveillance missions. 

Due to their higher energy density compared to other 

rechargeable batteries, the Raven RQ-11B uses one recharge-

able lithium-ion battery for its full operation.  Unfortu-

nately, a fully charged lithium battery takes from 30 min-

utes to 1 hour to discharge.  Therefore, the Raven UAV has 

a flight-time limitation that relates directly to the 

amount of time it takes for the battery to discharge.  The 

battery is the only source of electrical power provided to 

the aircraft, and once the battery discharges, it forces 

the Raven operator to bring the aircraft back from its mis-

sion. 

Another limitation encountered in the Raven UAV is its 

weight.  Being a small unmanned aerial vehicle (SUAV), the 

aircraft is designed to lift a maximum weight of 4.2lb.  

Hence, there is no room to mount additional batteries to 

overcome the limited operating time that one battery pro-

vides.  Besides, adding more batteries defeats the advan-

tages of the SUAV, which is its portability.  Soldiers and 
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Marines cannot add more weight to their already heavy packs 

to operate the Raven for more than 1 hour. 

The objective of this research was to investigate an 

alternative way to provide constant electrical power to the 

Raven UAV and/or to recharge the embedded lithium-ion bat-

tery on the aircraft without adding additional batteries, 

and therefore, extending its endurance.  For this, we 

looked at thin-film photovoltaic (TFPV) cells made out of 

copper indium gallium di-selenide (CIGS) semiconductor ma-

terials, with a power efficiency of 13%, to generate addi-

tional electric power from sunlight. 

In the past, similar thesis work, performed on re-

motely piloted vehicles (RPV), has demonstrated that the 

flight time can be extended by three times with the use of 

TFPV.  This thesis was designed to proof this concept on 

the Raven RQ-11B UAV, which is a heavier aircraft and whose 

power consumption is higher due to its payload. 

 Another part of the research consisted of using the 

wing-mounted solar cells to recharge UAV batteries or other 

electronics, reducing the need for an external power sup-

ply. One great advantage of using solar cells to recharge 

batteries or other electronics is the fact that it could do 

its job in absolute silence, preventing friendly forces 

from being detected by the enemy.  

 The improvement of endurance of the Raven could 

greatly benefit all military units who currently use this 

type of aircraft for intelligence, surveillance, and recon-

naissance (ISR) missions. Additionally, this added capabil-

ity could be of great interest in areas that require con-

stant surveillance such as border, maritime, forestry, ag-

riculture, etc. 
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I. INTRODUCTION 

A. BACKGROUND 

Small Unmanned Aerial Vehicles (SUAVs), small enough 

to be launched by hand and carried in a backpack, have 

proven to be a valuable asset for troops on the ground, 

specifically the Raven RQ-11B. Its portability and capabil-

ity to expose enemy activity beyond the horizon, which oth-

erwise would not be detected, make this Small Unmanned Ae-

rial Vehicle (SUAV) a unique and essential piece of equip-

ment for the military. 

Several are the reasons that make the Raven UAV the 

preferred UAV of battalion commanders in Iraq and in Af-

ghanistan.  First, its operation is so simple that it does 

not require a highly trained pilot to fly it. Second, this 

aircraft is ideal for quick peeks to see what is on the 

other side of the obstructed terrain.  Many Ravens are used 

to identify the location of Improvised Explosive Devices 

(IEDs).  Third, their infra-red (IR) and Electro-Optical 

(EO) cameras provide enough resolution to show someone car-

rying a weapon. Some say that they are better than the cam-

eras carried by the AH-64 Apache Attack Helicopter. Fourth, 

its price per unit is affordable compared to other large 

UAVs. Finally, its size and weight are perhaps the most at-

tractive advantages, since it can be easily carried by Spe-

cial Forces scouts and squads.   

However, despite their enormous contributions in the 

battlefield, the Raven UAV, also known as a SUAV, has cer-

tain constraints that limit its operation.  One of them is 

the partial amount of time the battery lasts on a single 
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mission.  Each battery can provide a maximum of 90 minutes 

of flight, after which time the aircraft needs to be re-

trieved to recharge the battery.  Unfortunately, for cer-

tain missions, one 1.5 hours is not enough time to conduct 

intelligence, surveillance, and reconnaissance (ISR) type 

operations, and adding more batteries represent more weight 

to the already heavy packs those soldiers and Marines carry 

on the battlefield.  Therefore, it is imperative to look 

for alternative sources of energy to provide the Raven 

Small Unmanned Aerial Vehicle with additional power to con-

duct ISR operations for long periods of time without rely-

ing solely on batteries. 

B. OBJECTIVE 

Thanks to the recent advances in solar cell technology 

and the development of thin-film photovoltaic (TFPV) cells 

made out of CIGS semiconductor materials, the potential for 

replacing battery power with solar power on SUAV is greater 

every day.  These lightweight, high efficiency, and flexi-

ble solar cells, mounted to the wings of the aircraft, 

could provide sufficient electrical power to operate the 

UAV without relying solely on battery power, thus, increas-

ing the endurance and/or capabilities of the aircraft.  In 

this research, we investigated the advantages of using sun-

light as an alternative source of power for the Raven UAV. 

Another part of this research included a small modifi-

cation in the structure of the aircraft.  By increasing the 

size of the center wing, we attempted to increase the lift, 

which reduces the amount of power provided by the battery, 

and at the same time, increases the area necessary to mount 

more solar cells.   
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Additionally, we tested Raven RQ-11B SUAV prior and 

during flight to determine the power consumption rate of 

the onboard lithium-ion battery at different speeds in or-

der to identify different means to conserve electrical pow-

er and ways to recharge the battery while on flight.  We 

also investigated the fact that, when the Raven is not in 

flight, wing-mounted solar cells can still be used to re-

charge other electronic equipment, reducing the need for 

troops to plug in to a power source or carry additional 

batteries. 

Finally, this investigation took into consideration 

the cost benefit (increased flight time versus initial and 

recurring costs) of modifying the aircraft, as well as any 

other maintenance, training, special handling, storage 

needs, and potential negative impact on flight parameters.   

C. RELATED WORK 

On 4 November 1974, the Sunrise I (Figure 1), designed 

by R.J. Boucher from Astro Flight Inc., impressed many re-

searchers around the world when his solar-powered aircraft 

flew 20 minutes at an altitude of around 100m during its 

inaugural flight.   

 

Figure 1.   Sunrise I, 1974 (From [1]). 
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Since then, close to a hundred flights have been con-

ducted using solar technologies. The last successful solar 

UAV flight was reported on 17 July 2010, when the QinetiQ’s 

Zephyr solar UAV completed a flight record of seven con-

tinuous days, breaking previous records [2]. Figure 2 shows 

a team of engineers and technicians preparing the Zephyr 

solar UAV for launch. 

 

Figure 2.   QinetiQ’s Zephyr Solar UAV (From [2]). 

Nowadays, more interesting ideas are in progress.  For 

example, engineers are designing hybrid UAVs (fuel and so-

lar power combined) that can be placed in geostationary po-

sition, above jet stream and above severe weather, where 

they can serve as telecommunications relays, weather ob-

servers, or peacekeepers over the horizon perch [3]. 

 Nevertheless, this area of research is not limited to 

UAVs. Recently, researchers in Switzerland demonstrated the 

possibility of launching a solar-powered plane after they 

successfully launched their Solar Impulse with a pilot on-

board, completing a 24 hour test flight over the skies of 

Switzerland.  The carbon fiber prototype flew over a day, 

allowing its 12,000 solar panels to soak up as much energy 

http://www.engadget.com/2010/07/17/zephyr-solar-uav-sets-yet-another-flight-record-7-days-and-coun�
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as possible, charging the batteries enough to keep the 

plane aloft through the dark of night [4]. 

On September 2009, [5] attempted a related type of re-

search.  Using a small commercial off-the-shelf (COTS) 

plane with similar characteristics to the Raven UAV, and 

mounting 8% efficient CIGS TFPV cells on the wings and with 

no additional electronic hardware such as a Maximum Power 

Point Tracker (MPPT) or power converter, he demonstrated 

that his plane could fly 2.5 times longer with solar cells 

than without.  Hurd’s research concluded that although the 

Raven is much heavier and has greater power consumption due 

to its payload, similar improvements could be seen using 

higher efficiency CIGS cells, a much improved construction, 

and a maximum power point tracker circuit.  He also con-

cluded that the cost of such solar modification is about 3% 

of the initial cost of a single Raven [5].   

Our research is designed to apply the same concept to 

an actual Raven UAV and to improve its endurance and capa-

bility by modifying the structure of the aircraft, install-

ing a maximum power point tracking circuit, and mounting 

13% efficiency CIGS cells.  With all these added parts, we 

expect the Raven RQ-11B to maintain, if not surpass, Wil-

liam Hurd’s design and concept. 

These previous discoveries gave us the confidence to 

continue our research and seek similar endurance results on 

smaller aircraft such as the Raven RQ-11B SUAV.   

D. APPROACH 

To even consider the possibility of conducting this 

research, it was imperative to get our hands around an ac-
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tual Raven RQ-11B SUAV.  Thanks to the Marines from Marine 

Corps Tactical Support Systems Activity (MCTSSA) and to the 

technical representatives from the Naval Weapons Center in 

China Lake, California, we were able to borrow one asset in 

which we were able to apply our concept.   

Another important focus of this research was to ex-

plore the latest high-efficiency TFPV cells on the market.  

Global Solar, a German company, turned out to be our best 

vendor of solar cells for this project after they developed 

a 13% efficiency CIGS TFPV cell.   

Similarly, DC-DC power converters, as well as maximum 

power point trackers and other electronic components, were 

necessary to investigate in order to improve the power con-

sumption of the battery that powers the Raven SUAV.   

Lastly, it was necessary to study the possibility of 

extending the size of the wing in order to improve its lift 

capacity. It is worth mentioning that this research focused 

on any modifications that would have the greatest opera-

tional impact for a significant number of years.  

E. ORGANIZATION 

 Chapter II reviews the Raven UAV Program and fo-

cuses on its acquisition, characteristics, and 

limitations, as well as capabilities.  

 Chapter III reviews the theory of operation of 

solar cells, and compares available thin-film 

photovoltaic technology such as CIGS and Silicon. 

 



 7

 Chapter IV reviews different power electronic de-

vices that needed to be integrated into the cir-

cuit in order to acquire the best possible output 

power from the solar panel.  

 Chapter V covers the design and physical assembly 

of the aircraft components, as well as, its cir-

cuitry.  Additionally, it reviews the construc-

tion of the modified wing along with other mate-

rials that were used to put the solar panel to-

gether. 

 Chapter VI provides testing methods and results, 

to include bench tests, stationary outdoor, and 

flight tests. 

 Chapter VII gives conclusions, and makes recom-

mendations for future research. 
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II. RAVEN RQ-11B UAV 

A. HISTORY OF THE RAVEN PROGRAM 

The Raven program started in 1999, when the U.S. Army 

acquired four FQM-151 Pointer UAVs from AeroVironment dur-

ing Military Operations in Urban Terrain (MOUT) ACTD (Ad-

vanced Concept Technology Demonstration) program (FY98-02).  

The program was established to identify technology solu-

tions to support dismounted forces fighting in urban ter-

rain. The Army was looking for a lightweight, small, simple 

user interface, low cost, reliable and robust system [6]. 

The FQM-151 Pointer UAV operated by U.S. Marines is seen in 

Figure 3. 

 

Figure 3.   FQM-151 Pointer (From [7]). 

Although the Pointer system provided that technology 

solution for gathering intelligence, it had some shortfalls 

that included the lack of an IR camera for night operations 

and a global positioning system (GPS). Additionally, its 

large ground control station (GCS) made the system unat-
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tractive to commanders on the ground, due to its lack of 

portability.  AeroVironment was, therefore, asked to de-

velop a smaller station, and, in turn, the company also de-

veloped a smaller air vehicle, called Raven.  It flew in 

October 2001, as a proof-of-concept vehicle named the 

“Flashlight” UAV [8].  

 

Figure 4.   Flashlight SUAV (From [9]). 

In 2002, the Flashlight, seen in Figure 4, was devel-

oped into the Raven under the Army’s “Pathfinder” ACTD pro-

gram.  The air vehicle was renamed Raven after the Norse 

God Odin’s use of ravens for reconnaissance and later to 

the Pathfinder Raven. On 21 January 2003, the Vice Chief of 

Staff of the Army and the Army G-3 approved the 101st Air-

borne Division for the rapid acquisition and equip-

ping/fielding of the Raven SUAV.  The first Low-Rate Ini-

tial Production (LRIP) version was the modified Block I Ra-

ven, first delivered in May 2003.  However, while testing 

the Block I UAVs, a couple of discrepancies were 
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encountered, including a difficult launch procedure and in-

sufficient flight stability [6]. The Raven Block I is shown 

in Figure 5.  

 

Figure 5.   Raven Block I UAV (From [9]).  

Corrections to these shortcomings were made in the 

Block II version, which was delivered in September 2003.  

The Block II was evaluated in Afghanistan, and the U.S. 

Special Operations Command eventually ordered a batch of 

179 Raven systems with three UAVs each.  The Raven Block II 

is seen in Figure 6.  In late 2004, the official designa-

tion RQ-11A was allocated to the Raven air vehicle.  Be-

sides the size there was essentially no difference between 

the Raven RQ-11A and the FQM-151 Pointer.  They both could 

carry the same navigation system, control equipment, and 

payload [6]. 
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Figure 6.   Raven Block II (From [9]). 

In 2005, after a competitive source selection process, 

AeroVironment Inc. in Simi Valley, California, was chosen 

by the U.S. Army for their upgraded Raven, the B model. A 

Milestone C decision was approved in October 2005. The Ra-

ven B went through Initial Operational Test and Evaluation 

from May to June 2006 at Fort Bliss, Texas. Full Rate Pro-

duction decision occurred in October of that same year. The 

Raven B Basis Of Issue Plan (BOIP) for Army acquisition ob-

jective was 2,182 systems. Current procurement objective is 

2,079 systems. There are approximately 855 Raven B systems 

fielded to the Army and National Guard. Raven B is fielded 

to the Brigade Combat Teams (BCTs) with 15 systems each. In 

Operation Iraqi Freedom (OIF) there were 255 systems and 41 

Raven B systems supporting Operation Enduring Freedom 

(OEF). U.S. Special Operations Command (USSOCOM), the U.S. 

Marine Corps, and U.S. Air Force also employ the Raven B 

[10]. 

In late 2006, the Army began fielding the Raven RQ-11B 

version. The RQ-11B, shown in Figure 7, is manufactured by 

AeroVironment.  The RQ-11B system is an upgraded version of 

the battle-proven Raven A, which is no longer produced.  It 
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is a lightweight system designed for rapid deployment and 

high mobility for both military and commercial applica-

tions.  The Raven B is the most advanced Small Unmanned Ae-

rial System (SUAS) deployed with U.S. armed forces [11]. 

 

Figure 7.   Raven RQ-11B SUAV (From [12]). 

In December 2009, the Raven B was upgraded to Digital 

Data Link (DDL), replacing its analog command link and vid-

eo. Additional upgrades include digital/encrypted Full-

Motion Video (FMV) and aircraft control, and future inter-

operability with Unmanned Ground Vehicles (UGV) and Unat-

tended Ground Sensors (UGS) [10]. 

The Pathfinder Raven SUAV has become the first mili-

tary useful man-portable SUAV to be produced in large quan-

tities and represents an essential part in the fight 

against Terrorism.    
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B. ACQUISITION STRATEGY 

1. Acquisition and Cost 

The demand for the Raven RQ-11B has been such among 

combatant commanders that in November 2005, the Raven be-

came the official U.S. Army SUAV, responding to a USSOCOM 

Operational Requirements Document (ORD). Full rate produc-

tion began in 2006 and is expected to last until 2014.  The 

initial buy was for 1,328 systems plus training and logis-

tics support.  The current Army objective for Raven acqui-

sition is 2,182 systems, representing over 6,000 aerial ve-

hicles owned by DoD.  The latest order was received in Feb-

ruary 2009, as the U.S. Army awarded AeroVironment an order 

worth $41.7 million for Raven SUAS, fulfilling requirements 

for Army, SOCOM and the USMC. Apart from the U.S. forces, 

Raven operators include the Italian, Dutch, Danish and 

Spanish forces.  This year, the Army is planning to buy 704 

more new Ravens at a price tag of $79.65 million.  Simi-

larly, the Navy and the Marine Corps are spending $55.4 

million for 517 new Ravens.  This is all included in the 

fiscal 2010 U.S. Department of Defense (DoD) proposed budg-

et [13].  

In February 2010, the U.S. Department of Defense 

awarded a $37.8 million contract to AeroVironment to design 

and develop advanced digital Ravens, retrofit kits and 

spare parts, and provide repair and training services to 

the U.S. Army and U.S. Marine Corps. The advanced digital 

Raven system offers higher communication security through 

signal encryption.  The deliveries of the upgraded digital 

Ravens are scheduled to begin in the next 12 months [11]. 
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Despite the enormous amounts of money spent by the DoD 

on a single unmanned aircraft, no one can deny that what 

makes the Raven so popular is its cost. The price tag for a 

single Raven aircraft is about $35,000, and the total sys-

tem costs $250,000. 

2. Training 

Regardless of the different levels of autonomy encoun-

tered in the Raven UAV, its successful operation depends on 

a well trained operator.  Army Raven B operators are either 

trained during unit fielding by the Program Manager of Un-

manned Aerial Systems (PM-UAS)/vendor New Equipment Train-

ing Teams (NETT) or at the 2nd Battalion, 29th Infantry Regi-

ment, 197th Infantry Brigade located at Fort Benning, Geor-

gia. This facility includes institutional training, Mobile 

Training Teams (MTT). The training for the Raven B is di-

vided into three programs of instruction: the operator’s 

course, one system remote video terminal (OSVRT) course, 

and the Master Trainer’s course. Fort Benning conducts 24 

classes per year with 12 students per class, turning out 

between 350 and 500 Raven operators per year.   Their Mo-

bile Training Teams also contribute a significant number of 

new operators each year [14]. From Figure 8, it can be seen 

two soldiers performing preflight checks on the Raven UAV. 
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Figure 8.   Preflight checks of the Raven UAV (From [15]). 

USSOCOM also conducts institutional operator training 

for USSOCOM personnel at Eglin Air Force Base, Florida, and 

San Clemente Island, California. PM-UAS, Fort Benning and 

USSOCOM all use the current United States Army Aviation 

Center of Excellence (USAACE) Program of Instruction 

(POI)/Training Support Package (TSP). The operator course 

is 10 training days and the Master Trainer course is five 

training days. The U.S. Army Aviation Center of Excellence 

at Fort Rucker and the Maneuver Center of Excellence (MCE) 

at Fort Benning are reviewing the feasibility of master 

trainers’ ability to train and certify operators at home 

station [10]. 

The great capabilities offered to the commanders on 

the field by the Raven B have increased the demand for this 

asset. As a result, the need for more operators becomes 

critical.  Fortunately, the Army is developing a formalized 

UAS training strategy that will support the breadth and 

depth of UAS operations [14]. 
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C. SYSTEM CHARACTERISTICS AND COMPONENTS 

1. System Composition 

The Raven B system includes three aircraft, a ground 

control unit (GCU), a remote video terminal unit, spare 

batteries, a charger, and support equipment.  It also has 

an autoland feature and an interoperable system interface 

unit.  The UAV is fully equipped with an automatic launch 

and recovery (ALR) system, which aids in automatic safe 

landing during communication failure with the GCU [11].  

Table 1 shows the list of components and their respective 

quantities included in one Raven system.  The pictures of 

each individual component in a Raven system are shown in 

Figure 9.  

Table 1.   Raven System Composition (From [16]). 
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Figure 9.   RAVEN RQ-11B SYSTEM (From [16]). 

As shown in Figure 10, each individual Raven SUAV con-

sists of the following parts:  

 Nose cone - encloses Infrared (IR) and Electro-

Optical (EO) cameras 

 Fuselage - houses the electric motor, propeller, 

pitot-static tubing, payload electronics, and a 

rechargeable lithium-ion battery 

 Wing – divided in three sections: left/right wing 

tips and one center wing 

 Tailboom – connects the rudder and stabilizer to 

the fuselage 

 Stabilizer 
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Figure 10.   Raven RQ-11B Parts Breakdown (From [16]). 

2. Performance  

The RQ-11B UAV can fly at a maximum altitude of 500ft 

(152m). The maximum cruising speed of the aircraft varies 

between 32km/h and 81km/h. The range and service ceiling of 

the aircraft are 10km and 4,500m, respectively. Its maximum 

endurance is 90min. The aircraft weighs around 4.2lb 

(1.9kg).  It has a wingspan of 4.5ft and reaches 36 inches 

in length [11].  The performance characteristics of the Ra-

ven UAV can be seen in Table 2. 
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Table 2.   Raven Specifications (From [16]). 

 

3. Payload 

The Raven carries an Electro-Optical (EO) or Infrared 

(IR) payload which provides aerial observation, day or 

night, at line-of-sight ranges up to 10 kilometers (shown 

in Figure 11).  Both cameras are located inside the nose 

cone and together weigh 6.6 ounces.  The EO sensor converts 

light rays into electronic signals for capturing images, 

real-time data and videos.  It had a front and side look 

camera.  This data is then delivered to the ground control 

and remote viewing stations [6]. 
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Figure 11.   Day and Night Video Imagery (From [8]). 

The IR payload has only a side look and includes a la-

ser IR illuminator, which is visible with night vision gog-

gles but not visible through the thermal imager in the IR 

payload. The EO payload is equipped with a fixed digital 

front camera capable of pan, tilt, and zoom functions [17].   

4. Navigation 

The RQ-11B can be controlled either manually from the 

ground control station or through the autonomous mode. The 

Raven B system provides fully automated take-off and land-

ing even in adverse weather conditions using advanced avi-

onics and a precision global positioning system (GPS) sys-

tem [11]. 

5. Engine 

The RQ-11B Raven is powered by a single Aveox 27/26/7-

AV electric motor. The engine is manufactured by U.S.-based 
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Aveox. Each engine features an integrated starter or gen-

erators, flight surface actuation systems, integrated gear-

boxes, shafts, cooling fans and pumps [11]. 

6. Ground Control Unit 

The Ground Control Unit (GCU) is a compact and light-

weight system, which displays real-time videos or images 

captured by the vehicle's payload cameras [11].  

The processing, retrieving and storing of the real-

time data provided by the UAV is carried out at the GCU. It  

also plays back videos for target evaluation and alleviate 

retransmission of videos and meta data to the operations 

network [11]. 

The GCU can be operated as a remote video terminal 

(RVT) when implanted at remote location. It also enables 

the command centers to view and analyze the data. The 

ground control unit can be easily assembled or disassembled 

in just 2 minutes [11]. 

7. Portability 

The Raven has the advantage that it can be easily 

transported in three small cases that can fit into a ruck 

sack.  The wing is divided into three small sections which 

facilitates its transportation. It can be launched within 

minutes by hand and it lands by itself without requiring a 

landing gear or a landing strip. 

D. SYSTEM LIMITATIONS 

1. Battery Life 

One of the constrictions encountered on this UAV is 

the limited amount of flight time it provides to the opera-
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tor on a single mission. The Raven SUAV is a battery oper-

ated aircraft.  Six lithium-ion (Li-ion) polymer cells make 

up the RQ-11B rechargeable battery pack.  It has a fully 

charge voltage of 25.2VDC and a capacity of 4 Ampere hours 

(Ah).  The battery can last from 60 to 90 minutes under 

normal flying conditions on a single mission.  Additional 

factors that may affect the endurance of the aircraft are: 

altitude, wind currents, winds speeds, temperature, etc. 

2. Altitude 

The maximum flight altitude is 10,500ft; however, fly-

ing at that level may impact flight performance, primarily 

reduced climb rate and flight endurance [17].  

The normal operating altitude is 150ft to 1,000ft 

above ground level (AGL). Operating above 500ft AGL reduces 

video sensor performance [17].     

3. Wind Speed   

The Raven UAV is designed to sustain wind speeds of up 

to 20 knots to include flying under blowing sand and dust. 

It could operate in winds higher than 20 Knots but with re-

duced mission capability and higher risk of damage during 

launch, landing, and recovery.  Flying at that rate also 

implies reduction in flight endurance, since more battery 

power is consumed [17].  

4. Temperature  

Additionally, its system components have maximum oper-

ating temperature range of 50-degrees Celsius and a minimum 

of 29-degrees Celsius.  However, operating under extreme 

low temperatures reduces the battery life of the UAV [17]. 



 24

Without a doubt, the success of the Raven program is 

attributed to the well-thought aircraft design, which 

evolved around supporting that soldier and Marine on the 

ground.  The performance characteristics described in this 

chapter has made the Raven SUAV the weapon choice for com-

batant commanders on the field, providing them with "over 

the hill" intelligence in direct support of their respec-

tive battalion's activities. Despite their limited flight 

endurance, Ravens continue to support Army and Marine Corps 

units in Iraq and Afghanistan.  Indeed, more needs to be 

done with respect to extending flight endurance of the Ra-

ven RQ-11B SUAV. Only the application of the latest solar 

cell technology can greatly improve its performance and 

provide hours of uninterrupted route reconnaissance, battle 

damage assessment, force protection, convoy protection, 

surveillance, intelligence gathering, etc., without the 

need for retrieving the Raven every 90 minutes to replace 

its battery. 
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III. CIGS TFPV CELLS 

A. INTRODUCTION 

CuInGaSe2 (CIGS) polycrystalline thin film photo-

voltaic cells are a realistic option for reaching the goal 

of low-cost, high efficiency power conversion from renew-

able energy sources [18].Equation Chapter (Next) Section 3 

One of the great advantages offered by a CIGS TFPV 

cell is its efficiency, i.e., the ability to produce the 

greatest amount of electricity for a given illumination 

level.  Research groups around the world have successfully 

reported a steady increase in efficiency of laboratory de-

vices.  For example, in March 2008, the National Renewable 

Energy Laboratory (NREL) reported an efficiency of 19.9%.  

Recently, the Centre for Solar Energy and Hydrogen Research 

in Germany reported a record of 20.1% efficiency in thin 

film CIGS cells [19]. 

Although much improvement in efficiency is seeing in 

laboratory devices, the manufacturing arena is slowly lev-

eling the field.  For example, Global Solar, the leading 

manufacturer of CIGS thin-film solar on a flexible sub-

strate, has developed 10% and 13% efficient thin film 

cells. A single CIGS thin-film solar cell is shown in Fig-

ure 12. 
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Figure 12.   CIGS TFPV Cell (From [20]). 

Other advantages of this type of cell include its 

flexibility and lightweight which make this type of photo-

voltaic (PV) cell suitable for a variety of applications 

such as the one included in this research.  It is worth 

mentioning that our research was conducted using 13% effi-

ciency CIGS TFPV cells from Global Solar. 

B. SOLAR SPECTRUM AND SOLAR RADIATION 

Solar radiation at the Earth’s surface varies due to 

atmospheric effects, latitude and location, season of the 

year, and time of the day.  Elements encountered in the at-

mosphere absorb the incident photons resulting from solar 

radiation.  Gases like ozone, carbon dioxide, and water va-

por absorb those photons with similar bond energy than 

those gases.  Nonetheless, dust particles and aerosols have 

a greater impact on reducing the power from solar radia-

tion.  They not only absorb photons, they also produce 

scattering of light [21]. 
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The solar spectrum is referenced through the Air Mass 

(AM), which quantifies the reduction in the power of light 

as it passes through the atmosphere.  Outside the Earth’s 

atmosphere the reference spectrum is (AM 0), which corre-

sponds to a solar radiation with an intensity of approxi-

mately 1370 watts per square meter.  This is considered the 

solar constant and it is the value at mean Earth-Sun dis-

tance at the top of the atmosphere [22]. This spectrum is 

normally used to predict the performance of solar cells ex-

pected to be used in space. At the surface of the Earth, on 

the other hand, the solar spectrum reference is (AM 1.5), 

which has a normalized solar radiation intensity of 1,000 

Watts per square meter.  From Figure 13, the different path 

lengths of irradiation can be observed.  Air mass varies 

with location on the surface of the Earth.  

 

Figure 13.   Air Mass (After [23]). 



 28

C. SOLAR CELLS  

PV cells, commonly known as “Solar Cells,” come in a 

variety of materials and processes that can potentially sa-

tisfy the requirements for photovoltaic energy conversion, 

but in practice nearly all photovoltaic energy conversion 

uses semiconductor materials in the form of a p-n junction 

[21]. 

1. P-N Junctions 

P-n junctions result from joining n-type and p-type 

semiconductor materials. The n-type region contains high 

electron concentration and the p-type high hole concentra-

tion.  Thus, electrons diffuse from the n-type side to the 

p-type side, recombining with holes.  Similarly, holes flow 

by diffusion from the p-type side to the n-type side. If 

the electrons and holes were not charged, this diffusion 

process would continue until the concentration of electrons 

and holes on the two sides were the same, as happens if two 

gasses come into contact with each other. However, in a p-n 

junction, when the electrons and holes move to the other 

side of the junction, they leave behind exposed charges, 

creating an electric field between the positive ion cores 

in the n-type material and negative ion cores in the p-type 

material. This region is called the "depletion region" 

since the electric field quickly sweeps free carriers out, 

hence the region is depleted of free carriers. A "built in" 

potential Vbi due to the electric field is formed at the 

junction [21].  
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2. Band Gap 

The band gap of a semiconductor is the minimum energy 

required to free an electron from its orbit to become a mo-

bile charge carrier and participate in conduction. To bet-

ter understand the band structure of a semiconductor a band 

diagram is used to show the energy of the electrons as they 

move inside the semiconductor material. The valence band is 

the lower energy level of a semiconductor and the conduc-

tion band is where an electron is considered free.  The 

band gap is the distance between the conduction band and 

valence band [21]. Figure 14 shows the band diagram of a p-

n junction and how carriers are generated by an incident 

photon and separated by the built-in electric field of the 

depletion region.  The Fermi level depicted in Figure 14 

indicates the type of conducting material.   

 

Figure 14.   Band Gap Diagram (From [24]). 
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As the electron in the conduction band moves freely 

about the semiconductor and participates in conduction, the 

movement of an electron to the conduction band leaves be-

hind an empty space for an electron. Another electron from 

a neighboring atom can move into this empty space; hence, 

leaving behind another space. This repeated movement of the 

space for an electron is called a "hole" and can be consid-

ered as the movement of a positively charged particle 

through the crystal structure. As a result, we observe 

movement of electrons in the conduction band and holes in 

the valence band.  This movement of electrons and holes 

that participate in conduction are called "carriers" [21].  

3. Photovoltaic Effect 

Simply put, the photovoltaic effect is the transforma-

tion of radiation or solar energy into electrical energy.  

As shown in Figure 14, when light hits the surface of a so-

lar cell (SC), incident photons are absorbed, creating 

electron hole pairs.  This happens only if the photon has 

greater energy than the band gap of the semiconductor mate-

rials that conforms the SC.  The p-n junction collects 

these carriers and separate electrons and holes through the 

built-in electric field of the depletion region, preventing 

recombination and creating voltage or a corresponding elec-

tric current [21].  

4. Solar Cell Structure 

A solar cell or photovoltaic cell is layered structure 

comprising different layers, such as antireflection, light 

absorbing material, metal electrical contact. The antire-

flection layer is made of an electrically conductive mate-
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rial that permits light to pass to the absorber.  The ab-

sorber is a layer of semiconductor material in the form of 

a p-n junction that absorbs the light photons necessary to 

generate electrons via the photovoltaic effect.  This type 

of material absorbs wavelengths of solar light that reach 

the Earth’s surface.  Lastly, each solar cell must have a 

front and back metal contact which is where the device gen-

erates a voltage differential and electrical current, de-

pending on the intensity of the light.  The front electri-

cal contact layer is in the form of a grid pattern to avoid 

shelf-shading.  The cross sectional area of a solar cell is 

shown in Figure 15. 

 

Figure 15.   Solar Cell Structure (From [25]). 

5. Thin-Film Photovoltaic Cells 

When looking for a quick description of what a CIGS 

TFPV cells are, most search engines on the Internet would 

describe them as: 

CIGS belongs in the category of thin film solar 
cells (TFSC). The semiconductors used as absorber 
layer in TFPV exhibit direct band gaps allowing 

http://en.wikipedia.org/wiki/Thin_film_solar_cells�
http://en.wikipedia.org/wiki/Thin_film_solar_cells�


 32

the cells to be a few micrometers thin; hence, 
the term TFSC is used to refer to them. [26]  

Thin-film photovoltaic cells are made of one or more 

thin layers of absorber or photovoltaic material on a sub-

strate. It is this characteristic that makes these solar 

cells flexible and lightweight.  TFPV cells are cheaper 

than thick-film solar cells because they are manufactured 

with a smaller amount of light absorbing materials.  This 

leads to reduced processing costs from that of bulk materi-

als, but at the same time, reduces the energy conversion 

efficiency of the cell.  TFSC are usually categorized ac-

cording to the light absorbing material used.  The most 

common photovoltaic materials used are: Amorphous Silicon, 

Cadmium Telluride, Copper Indium Gallium Selenide.  For the 

purpose of this research, we focused on CIGS TFPV cells, 

only [26]. 

Throughout the years, great achievements in energy 

conversion efficiencies for these types of cells have been 

made. In 2008, the National Renewable Energy Laboratory 

(NREL) reported a 19.9% efficiency which was by far the 

highest compared with those achieved by other thin film 

technologies such as Cadmium Telluride (CdTe) or amorphous 

silicon (a-Si) [27]. On 29 April 2010, scientists from the 

Centre for Solar Energy and Hydrogen Research based in 

Stuttgart, Germany reported a new record efficiency of 

20.1% efficiency on a 0.5 square centimeter cell.  They 

further claim that this efficiency obtained is for thin 

film cells in general and not only for CIGS [19].  It is 

important to note that these are lab-scale achievements and 

have not made their way into production.  The industry of 

TFPV cells still displays lower energy conversion efficien-

http://en.wikipedia.org/wiki/Cadmium_Telluride�
http://en.wikipedia.org/wiki/Amorphous_silicon�
http://en.wikipedia.org/wiki/Amorphous_silicon�
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cies of 10% and 13%.  In the long-term however, thin-film 

technology is expected to overtake thick-film technology in 

terms of growth. It will go hand in hand with the worldwide 

demand for photovoltaic systems [20]. 

D. CIGS AND SILICON 

CIGS TFPV cells differ from silicon TFPV cells in that 

their semiconductor material interface occurs between re-

gions of dissimilar crystalline semiconductors with differ-

ent band gaps.  As mentioned before, CIGS TFPV cells are 

not as efficient as crystalline silicon solar cells but 

they are expected to be substantially cheaper due to the 

reduced amount of absorbing material used in its fabrica-

tion, which results in a much lower cost for material and 

fabrication. Being a direct band gap material, i.e., elec-

trons in the semiconductor material can shift from the low-

est energy state in the conduction band to the highest en-

ergy state in the valence band without a change in the 

crystal momentum, CIGS have very strong light absorption, 

and therefore, they can be made with a very thin active 

layer.  Often 1-2µm of CIGS is enough to absorb most of the 

sunlight. The opposite occurs with silicon since greater 

thickness of crystalline silicon is required for the same 

absorption [26]. 

E. CIGS STRUCTURE 

Most p-type CIGS TFPV cells are fabricated on glass, 

mylar or stainless steel substrates. Nevertheless, the most 

common substrate is soda-lime glass because it is electri-

cally insulating, comparatively cheap, temperature stable 

and with a smooth surface. This substrate is coated using 

http://en.wikipedia.org/wiki/Monocrystalline_silicon�
http://en.wikipedia.org/wiki/Direct_bandgap�
http://en.wikipedia.org/wiki/Coating�
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physical vapor deposition (PVD) on one side with molybdenum 

(Mo) that serves as metal back contact. CIGS and ZnO form a 

hetero-junction, where CIGS is doped with p-type material 

and ZnO with the n-type material through the incorporation 

of aluminum (Al).  It is this asymmetric doping that causes 

the space-charge region to extend much further into the 

CIGS than into the ZnO. Both materials are buffered by a 

thin layer of CdS using a wet chemical method called Chemi-

cal Bath Deposition (CBD).  The main role of this buffer is 

to passivate the absorber surface and to provide suitable 

partnering material between CIGS and ZnO.  The buffer layer 

is followed by a thin layer of highly resistive ZnO which 

protects the surface and evens out the potential. To mini-

mize the absorption, the upper layers need to be minimized 

by increasing the band gap of ZnO and CdS ((Eg,ZnO=3.2eV and 

Eg,CdS=2.4eV), respectively.  The front contact consists of a 

transparent conducting oxide (TCO).  TCO consists of heav-

ily ZnO doped with aluminum (Al).  The front contact is 

used for current collection [28]. The basic structure of a 

CuInGaSe2 thin-film solar cell is depicted in Figure 16. 

 

Figure 16.   CIGS Cell Structure (After[28]). 

http://en.wikipedia.org/wiki/Molybdenum�
http://en.wikipedia.org/wiki/Back_contact�
http://en.wikipedia.org/wiki/Space_charge_region�
http://en.wikipedia.org/wiki/Thin-film_solar_cell�
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F. CIGS DEGRADATION 

To date, the level of understanding of performance de-

gradation among different TFPV cells is still inadequate.  

Oxygen and temperature seem to be a major cause of degrada-

tion.  Recent studies conducted by the National Renewable 

Energy Laboratory on thin-film CdS/CdTe solar cells have 

concluded that oxygen affects the cell performance by sup-

pressing the interdifussion at the junctions.  

Without the presence of oxygen, the interdifus-
sion can be substantial, resulting in fully con-
sumed CdS regions, which have same effects as 
pinholes, and high Te concentration CdS1xTex re-
gions, which have a lower bandgap than CdS.  This 
leads to reduced Voc and Jsc for the CdS/CdTe solar 
cell. [29] 

It was then determined that oxygen impurity in CBD-CdS 

films is therefore proposed to be the main cause for the 

different solar performance using CBD-CdS and non-CBD-CdS 

as window layers [29]. 

Another study conducted by NREL scientists on CdTe de-

vices determined that at temperatures from 90-degrees Cel-

sius and 120-degrees Celsius, degradation is dominated by 

Cu diffusion from the back contact towards the electrical 

junction.  At lower temperatures degradation is not known.  

Nonetheless, these findings greatly affect the encapsula-

tion process and the need to find materials that can cure 

at room temperatures [30].   

Nevertheless, the thickness of the light absorbing ma-

terials used in the fabrication of TFPV cells can also de-

grade its performance.  As seen in Table 3, using semicon-

ductor materials with less than 1µm thickness can greatly 

reduce the energy conversion efficiency [30]. 
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Table 3.   Summaries Thin Cells Efficiencies (From [30]). 

t (µm)  VOC (V) JSC 
(mA/cm2)  

 FF 
(%) 

Efficiency 
(%) 

1.0     CIGS 0.676 31.96 79.47 17.16 
NREL 

0.75   CIGS 0.652 26.0 74.0 12.5 
0.40   CIGS 0.565 21.3 75.7 9.1 
0.47   CIGS 0.576 26.8 64.2 9.9    

EPV 
1.       CIGSS 

Module 
25.26 2.66 69.2 12.8  

Shell 
Solar 

0.87    CdTe 0.772 22.0 69.7 11.8   
U. of 
Toledo 

 

The introduction of TFPV cells technology has revolu-

tionized the industry of solar energy.  To date, CIGS are 

being incorporated to many applications due its flexibil-

ity, low cost, and lightweight benefits.  Our research is 

based on the use of CIGS TFPV cells along with other power 

electronic devices that would generate enough power to ex-

tend the flight time of the Raven RQ-11B, which are de-

scribed in the next chapter. 
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IV. POWER INTEGRATION 

As explained in Chapter III, the amount of power pro-

vided by a solar cell varies throughout the day and is 

based on external factors such as temperature, irradiance, 

angle of incidence, etc.  For this reason, we first look 

into other electronic components that could overcome this 

effect and help us achieve the desired power levels.  

Equation Chapter (Next) Section 4  

A. DC-DC POWER CONVERTER 

As it will be described later in Chapter V, the sur-

face area available for this project allowed a total of 

forty solar cells connected in series to serve as an addi-

tional power source.  Given the fact that each CIGS TFPV 

cell had maximum output voltage of 0.5VDC and an efficiency 

of 13%, our initial calculations estimated a maximum output 

voltage from the solar panel of 17VDC, as seen in equations 

4.1 and 4.2. 

 

  panel cell cells cell ffV V N V E     (4.1) 

  0.5 40 0.5 0.13 17.40VDCpanelV       (4.2) 

 

In equation 4.1, panelV  represents the total voltage of 

the solar panel, cellV  is the voltage given by a single CIGS 

solar cell, cellN  represents the number of solar cells, and 

ffE  is the efficiency of the solar cells obtained for this 

project. 
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Therefore, it was imperative to look into a boost 

(step-up) DC-DC power converter to get a higher voltage 

that would enable us to charge a 25.2VDC Lithium-ion (Li-

ion) Raven battery. 

Step-Up (Boost) converters are power converters de-

signed to provide an output voltage greater than the input 

voltage.  Their basic circuitry consists of at least two 

semiconductor switches (a diode and a transistor) and at 

least one energy storage element [31]. The basic circuitry 

of a boost converter is shown in Figure 15. 

 

Figure 17.   Boost Converter Schematic (After [31]). 

This type of converter operates in the following man-

ner: when the transistor switch is on, the inductor re-

ceives energy from the DC source and the diode is reverse 

biased, preventing the capacitor from discharging.  When 

the switch is off, the inductor current is forced to flow 

through the diode and the load.  The output voltage of the 

boost converters is derived from the volt-second balance in 
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the inductor.  With a duty ratio D of the switch, the out-

put voltage outV  is given by equations 4.3 and 4.4, where ont  

is the time when the switch is on, offt  is the time when the 

switch is off, and inV  is the input voltage: 

 on

on off

t
D

t t



 (4.3) 

 

 

 
1

in
out

V
V

D



 (4.4) 

 

Thus, for all values of D less than 1, the output vol-

tage is always greater than the input voltage.  The capaci-

tor needs to be large to maintain a constant output voltage 

[32].   

High efficiency in a DC-DC power converter is a neces-

sity.  Ideally, we would like to have 100% efficiency; in 

practice, power converters have efficiencies between 70% 

and 95%.  For this research, we were able to acquire a 

boost converter that had an efficiency of 96% to 98%. 

B. MAXIMUM POWER POINT TRACKER 

A more suitable component used in photovoltaic appli-

cations is the Maximum Power Point Tracker (MPPT).  An MPPT 

is nothing more than a fully electronic system that varies 

the electrical operating point of the solar panel so that 

it can deliver maximum available power.  To extract the 

maximum power from the source, the MPPT matches the resis-

tance of the load to obtain a voltage from the source that 
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is suitable for the load.  This operation agrees with the 

basis of the Maximum Power Transfer Theorem, which states 

that the maximum power is transferred from the source to 

the load when the resistance of the source is equal to the 

resistance of the load.  It connects between the solar mod-

ule and the discharged battery.  It is a system that calcu-

lates the voltage at which the PV module is able to produce 

maximum power, regardless of the present battery voltage.  

Additionally, the MPPT includes a DC-DC converter which 

converts the calculated voltage at maximum power from the 

PV module to battery voltage; hence, eliminating the need 

for a separate power converter [33]. 

The charge current produced by the solar module can be 

calculated using equation 4.5: 

 arg
sp

ch e sp
batt

V
I I

V
   (4.5) 

In equation 4.5, spV  and spI  are the calculated voltage 

and current of the solar panel at maximum power. battV  is the 

voltage of the discharged battery [33].        

C. BALANCER CHARGER 

Dealing with Li-Ion batteries, which will be described 

in the next section, requires extreme caution.  Electro-

chemical reactions may occur when over-charging and over-

discharging Li-Ion batteries.  These reactions can decrease 

the life of the cell as well as present a safety hazard.  

To minimize this effect, manufacturers have placed maximum 

and minimum voltage limits on individual Li-ion cells.  

Typical values are 4.0V to 4.2V and 2.5V to 3.0V for the 

maximum and minimum voltages, respectively. Nevertheless, 
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due to the variations in cell manufacturing processes and 

raw materials, it is necessary to control the voltages of 

the individual Li-ion cells within the Li-ion battery pack 

to avoid cell to cell imbalances [34]. 

A balancer charger is the electronic component de-

signed to control the voltages of the individual cells in a 

Li-ion battery.  Balancer chargers are built with different 

charge control strategies.  Some monitor the battery volt-

age level, some monitor the cell voltage level, and others 

manage the cell voltage levels through dissipative and non-

dissipated components such as resistors and capacitors. 

For the purpose of this research, we concentrated our 

efforts in locating a balancer charger that would be light 

in weight and small in size compared to others in the mar-

ket.     

D. LITHIUM-ION BATTERIES 

Since 1991, lithium-ion rechargeable batteries have 

been commercialized all over the world and have become a 

fastest growing system due to their high-energy density and 

lightweight.  The Sony Corporation was the first one to put 

this product out on the market and most of their applica-

tions are now seeing in notebook computers, cell phones, 

and medical devices [35]. 

Lithium-ion batteries are preferred for their high-

energy density (Wh/Kg), which refers to the amount of en-

ergy they can hold.  The higher the energy density, the 

longer the runtime will be.  They have twice the energy 

density and three times the voltage per cell compared to 

standard Nickel Cadmium (Ni-Cd) batteries [35].  
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Another advantage that makes these batteries so popu-

lar is the low maintenance needed.  Most Ni-Cd batteries 

require being discharged 1V per cell periodically to pre-

vent crystalline formation and to prolong their lifetime.  

This is normally caused by memory.   

Ni-Cd batteries have a cyclic memory which means 
that it remembers how much energy was drawn on 
preceding discharges.  On a longer schedule dis-
charge the battery voltage would drop rapidly and 
it would lose power. [35] 

Lithium-ion batteries have also a lower self-discharge 

rate than other type of chemical batteries.  When not being 

used or in storage, they slowly discharge.  Li-ion batter-

ies can discharge at a rate of 5% per month or lower com-

pared to other Nickel based batteries that have a self-

discharge rate of 10%-30% [36].   

On the other hand, Li-ion batteries have certain draw-

backs.  For once, they require a protection circuit to lim-

it the peak voltage of each cell while charging and prevent 

the cell voltage from going too low on discharge. However, 

this protection circuit causes problems after a long stor-

age period.  Isidor Buchmann, president of Cadex, Inc., 

states:  

If the battery is left discharged after use, the 
self-discharge will further drain the pack and 
eventually drop the protection circuit at about 
2.5 volts per cell.  At this point, the charger 
will no longer recognize the pack and the pack 
appears dead. [35] 
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In this chapter, we described the additional elec-

tronic components that would provide the best possible out-

put power from our solar panel (SP).  In the next chapter, 

we show how we put everything together, every step of the 

way.    
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V. DESIGN AND ASSEMBLY 

After reviewing the history of the Raven SUAV program 

and its performance characteristics, understanding how CIGS 

TFPV cells work, and describing additional electronic com-

ponents needed for this research, it was time to configure 

the Raven RQ-11B with PV cells in order to complement, if 

not, substitute the aircraft’s battery power, and therefore 

extend its flight time.Equation Chapter (Next) Section 5 

A. WING MODIFICATION AND CONSTRUCTION 

Our initial goal was to implement this idea over the 

original wings of the Raven SUAV.  Nevertheless, our spon-

sors insisted us that we apply our concept on an extended 

wing which was designed and manufactured by mechanical en-

gineers from the Composites Laboratory at the Naval Air 

Warfare Station in China Lake, California.  Their intent 

was to increase the lift in order to add more electronics 

to the UAV.  This idea turned out to be ideal since, at the 

same time, it gave us more flexibility to find the best de-

sign possible for our solar cells.   

It was important to consider that the smaller the cell 

the less current that was going to put out. By having a 

larger area, we felt no need to make the cells too small 

which reduced the amount of labor involved in making the 

connections. 

This modified wing was 40cm longer in the center sec-

tion of the wing compared to the original.  The wing tips 

had exactly the same dimensions as in the original wing 

tips.  The dimensions of the wing are described in Table 4. 
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Table 4.    Raven RQ-11B Wing Dimensions. 

 Length Width Area 

Center Wing 43.8cm 20.5cm 897.9sqcm 

Right Wing 43cm 20.5cm/13.5cm 731sqcm 

   Left Wing 43cm 20.5cm/13.5cm 731sqcm 

 

Figures 18 and 19 are picture representations of the 

original and modified Raven Wings.  The shaded areas in 

Figure 19 represent the two extended areas designed which 

gave us more area to place more solar cells. 

 

Figure 18.   Raven SUAV Wing Dimensions. 

 

Figure 19.   Modified Wing Dimensions. 
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Although the modification of the new wing was an ad-

vantage in regards to area available for solar absorption, 

it was manufactured as one big solid section which defeated 

its portability benefit.  The difference in dimensions be-

tween the modified and original wings is shown in Figure 

20.  

 

 

Figure 20.   Original vs. Modified Raven Wings. 

The original wing of the Raven RQ-11B comes in three 

separate sections, which is intentionally done to quickly 

disassemble the Raven UAV and place it inside a ruck sack 

to facilitate its transport. 

The construction of the wing took several weeks to 

complete.  However, it was critical to have a product with 

very similar characteristics as the original wings. The 

customized wing was made up of foam and fiberglass, exactly 

the same materials used on the original wings. 
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First, tooling was required to cast the foam.  The two 

pieces that formed the cast for the foam are shown in Fig-

ure 21. 

 

Figure 21.   Tooling to Cast the Foam (From [37]). 

Second, both pieces of tooling were clamped together 

to form a mold.  After the mold was constructed, it was ne-

cessary to pour the liquid foam through the cavity, as 

shown in Figure 22. 
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Figure 22.   Cast Clamped to Pour Foam (From [37]). 

Once the foam core was made, as seen in Figure 23, it 

was removed from the mold and was then wrapped with fiber 

glass. 

 

Figure 23.   Foam Core (From [37]).  
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The final product is seen in Figure 24, next to the 

original Raven wings.  Two modified wings were given to 

prove this concept. 

 

 

Figure 24.   Final Modified Wing. 

B. SOLAR PANEL DESIGN  

The next step was to come up with the best arrangement 

of solar cells that would give us the most output power, 

and at the same time, the least amount of cuts and connec-

tions possible. This was necessary to minimize the labor 

and the amount of handling involved. 

1. Area vs. Power 

A critical step in the design of the solar panel de-

pended on the amount of energy provided from the sun.  With 

the modified wing on hand and the information provided in 

Chapter III, we calculated the power per square centimeter 

that we expected to obtain from the solar panel. 
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Knowing that the standard AM1.5G spectrum has been 

normalized to give an intensity of 1KW/m2, or 0.1W/cm2 and 

that the area of our modified wing had a total surface area 

of 3,180cm2, we obtained an input power inP  from the sun of 

318 W.  The CIGS TFPV cells had an output efficiency of 

13%; therefore, we knew that our prospect solar panel would 

give us approximately 42W of output power ExpectedP  (See equa-

tions 5.1 and 5.2).  Nevertheless, it was necessary to con-

sider that by leaving space in between cells and depending 

on daylight conditions, our output power would be somewhat 

lower than projected.  

 2 20.1 / 3,180 318inP W cm cm W    (5.1) 
  
 
 318 0.13 41.8ExpectedP W W    (5.2) 

 

2. Solar Cell Arrangement   

Given the surface area of the modified wing, there 

were many possible solutions to achieve maximum output pow-

er from a solar panel.  However, after trying different de-

signs, we opted for one that would give us the least amount 

of cuts, less number of solder connections, and the greater 

amount of solar cell area.   

Global Solar Energy, our provider of CIGS TFPV cells, 

manufactures thin-film CIGS in strings of 18 cells con-

nected in series, as seen in Figure 25.  Each solar cell 

had 21cm in length and 10cm in width. 
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Figure 25.   CIGS TFPV Cells from Global Solar (From [38]).   

As mentioned earlier, it was not in our interest to 

make the cells too small. First, by reducing the area of 

each cell, we would be drastically reducing the amount of 

current.  Perhaps, the benefit of making the cells small 

and connecting them in series is that we could have in-

creased the amount of output voltage coming from the panel; 

however, by doing that we would have been reducing the to-

tal output current since it will always take the value of 

the smallest area of the solar cell on the panel.  There-

fore, it would have also reduced the power.   

Another thing to consider was to cut the cells along 

the length of the string to minimize the number of solder 

connections that we would have to make between cells. On 

the other hand, cutting the cells across the width of the 

string was difficult because the center busses that ran 

across the cell were harder to cut and would short out the 

cell due to the pressure applied when cutting it. 
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With these considerations in mind, we proceeded to 

mount a total of 40 solar cells onto the surface area of 

the wing.  Twenty-four cells measuring 6.3cm in width and 

10cm in length were placed on the center section, covering 

an area of 1,512cm2.  

The layout for the wing tips was a bit challenging to 

make due to their trapezoidal shape.  Also, it was neces-

sary to take into account that while the aircraft would be 

flying and turning to either side, one of the wing tips 

would not be facing the sun directly; thus, the current for 

the entire panel would depend on the solar cells facing 

away from the sun.  To minimize this effect, we made the 

area of the wing tip cells bigger compared to the cells on 

the center section.  Regardless of their shape, we wanted 

the area of these cells not to go below 75cm2.  In the end, 

we covered an area of 383.28cm2 in each wing tip, which gave 

us an overall solar cell area of 2,278cm2.  The final layout 

of the solar panel with the dimensions of each solar cell 

is depicted in Figure 26. 

 

Figure 26.   Solar Cell Arrangement. 
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After determining this new area of the wing that will 

be covered with solar cells, we went back to re-calculate 

the expected power ExpectedP  that would be produced by our so-

lar panel, using the same equations as in section 5A.  The 

calculated expected power is seen in equations 5.3 and 5.4. 

  

 2 20.1 / 2,279 228inP W cm cm W    (5.3) 

 

 228 0.13 29.64ExpectedP W W    (5.4) 

 

This time, we expected our solar panel to produce al-

most 30W of power, i.e., 12W lower than the 42W that we 

calculated using the entire area of the modified wing.  Of 

course, this output power would be accurate only if we were 

under AM1.5G irradiance conditions.  

C. CUTTING AND HANDLING OF SOLAR CELLS 

1. Handling 

Dealing with thin-film photovoltaic cells was not an 

easy task; especially, when the cells were not encapsu-

lated.  We decided to purchase CIGS cells without encapsu-

lation to facilitate the cutting and to reduce the overall 

weight of the cells.  Extra care needed to be taken when 

handling bare cells.  For instance, we wore clean gloves to 

avoid adhesion-impact of moisture and oil from our hands.  

We also had to be extremely careful of not bending the 

string structure to avoid stress on the ribbon-cell bonds. 

Normally, an encapsulated cell will have a thick lami-

nation surrounding the cell which weighs 0.7-Oz compared to 
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0.2-Oz, which accounts for the weight of a single bare 

cell.  Nevertheless, when a solar cell is not laminated, it 

runs the risk of degrading due to exposure to oxygen, hu-

midity, and heat, as it was explained in Chapter III.  Al-

so, there is a good chance of damaging the cell due to ac-

cidental folding and bending of the cell. 

For this reason, the manufacturer shipped its product 

in a hermetically sealed box.  The minimum purchase order 

consisted of 50 strings of 18 cells each.  Each cell’s di-

mensions consisted of 21cm by 10cm.  For our project we on-

ly needed one string which equaled a total of 18 cells. 

To remove the strings from the box it was necessary to 

obtain a vacuum sealer to extract all the oxygen that leaks 

inside the box after removing the strings.  This was done 

to prevent the rest of the cells from degrading.  Addition-

ally, we inserted nitrogen gas to eliminate any residual of 

oxygen. 

After the cells were removed, it was necessary to 

place them in a sealed container or bag until they were 

ready to be worked on or connected. 

2. Cutting 

Cutting the cells was difficult and required some 

skill; thus, it was necessary to come up with the arrange-

ment that would give us the least amount of cuts possible.  

Finding the right cutting tool was also a must.  We tested 

several tools such as scissors, paper cutters, knives, 

etc., but every time we cut the cell we noticed that the 

mechanical movement of the tool created enough pressure on 

the anode side against the cathode side of the cell that 
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ended up shorting the cell out.  We concluded that nothing 

worked better than a regular clean razor blade.  In Figure 

27, it can be seen our cutting technique on a bare CIGS so-

lar cell. 

 

Figure 27.   Cutting CIGS Solar Cell. 

Without a doubt, the most difficult part about cutting 

the cells was cutting over the center conductor which was 

thicker compared to the cell grid. In order to avoid this 

obstacle, we peeled off the conductor before we made any 

cuts. 

It is worth mentioning that every solar cell was 

tested for voltage and current under a halogen lamp to en-

sure that it was not shorted out and that it continue to 

maintain its functionality. 

D. LAMINATION AND ENCAPSULATION 

Before the cells were mounted and connected, they 

needed to be protected.  Different types of plastic films 

were tested to determine its strength, transparency, adhe-

siveness, and durability.  Strength in a plastic was needed 
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to sustain different weather conditions, high temperatures, 

as well as, tears or punctures.  Transparency in a plastic 

was as important since it needed to allow the sunlight to 

go through without reflection.  Adhesiveness was critical 

since it was necessary to hold the cells in place against 

the airframe of the wing of the Raven UAV.  Finally, it was 

important to find a durable plastic material that would 

last a long time without changing its properties, i.e., 

discoloration or de-lamination. 

We knew that Global Solar Energy, the manufacturer, 

uses some type of adhesive and moisture barrier for the la-

mination process, as seen in Figure 28, but using those ma-

terials increased the weight of the cell dramatically which 

was not convenient for our project. 

 

Figure 28.   CIGS Module Cross-Section (From [38]). 

After trying many different products in the market, 

the decision was made to acquire a clear, self-adhering 

protective film used on all types of carpeting.  This plas-
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tic film is a special blend of polyethylene and it coin-

cided with all of our requirements that we had previously 

listed.  The type of carpet protection film that we used is 

shown in Figure 29.     

 

Figure 29.   Carpet Protection Film (From [39]). 

We laminated each solar cell individually.  Although, 

tedious and lengthy, we found this method to be the best 

solution to avoid air gaps between the cell and the film 

and to prevent creases on the film. 

Each solar cell was tested for voltage and current un-

der a halogen lamp before and after lamination to ensure 

that no significant changes were present.  For the most 

part, in all the tests, an increase of 1mA in current was 

observed after a single layer of plastic, since once the 

plastic was adhered to the cell it improved the absorption 

of light.  The lamination process of a bare CIGS cell with 

carpet protection film is shown in Figure 30. 
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Figure 30.   CIGS Cell Lamination. 

Our sponsors did not allow us to make any permanent 

changes/additions to the wing; thus, we could not glue 

every solar cell to the wing.  Instead, a second layer of 

carpet protection film was necessary to secure the whole 

arrangement against the wing.    

E. WIRING AND CONNECTIONS 

By cutting the majority of the cells along the length 

of the string, we avoided doing too many connections.  The 

only connections left were in the wing tips and the connec-

tions coming from the panel to connect to the rest of the 

circuitry.   

There were a few things to consider before connecting 

the solar cells.  First, we were not sure about what type 

wire or conductor we needed to use. On one hand, we knew 

that the surface area of the modified wing would give us 



 59

approximately 40W of power and since our cells connected in 

series put out a voltage of 20V, we expected a maximum of 

2A of current to flow through the wiring of the solar pan-

el.  Therefore, we had the option to choose a solid round 

wire anywhere from gauge 26AWG to 18AWG.  However, a round 

conductor would have impacted adversely the air flow around 

the wing during flight due to its bulkiness.  Another fac-

tor was its weight.  Adding round solid wires would have 

increased the weight since the insulation of the wires also 

takes part into the equation.   

We decided to use the same material used in the manu-

facturing process that came with the string of cells.  

Global Solar Energy uses 0.10mm X 25mm of tinned Copper 

(Cu) flat material that did not required lead tinning. Un-

fortunately, the number of flat conductors that we were 

able to obtain was not enough to complete the entire solar 

panel connection.  Hence, we needed to use an alternative 

type of material but with similar characteristics as the 

pre-fabricated buss material.  Cu conductor tape turned out 

to be the best solution for this situation.  Cu conductor 

tape is flat and has the ability to adhere to any surface 

firmly.  Additionally, its adhesive material is conductive 

which eliminates the use of soldering or any other methods 

to establish connectivity.  Nonetheless, we decided to use 

solder to ensure the connections would not come apart while 

the UAV was flying.  Figure 31 shows Cu conductor tape that 

we purchased for our project. 
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Figure 31.   Copper Conductor Tape. 

Another issue was deciding on whether it was safe to 

use solder or not.  Our concern was damaging the cells due 

to excessive heat.  An alternative solution was to use a 

new product called “Wire Glue.” This product is used for 

low voltage electrical connections and utilizes advanced 

micro-carbon technology.  The manufacturer affirmed that 

Wire Glue was developed with epoxies and other adhesive 

systems with unsurpassed durability and strength [40]. Ini-

tially, the product adhered strongly to the other metals 

and its electrical connectivity performed as advertised.  

However, using Wire Glue was messy and the whole process 

turned out to be lengthy.  As a result, we chose to use 

tin/lead solder, instead, heating the soldering iron to 370 

degrees Celsius.  From Figure 32, it can be seen a test 

conducted while gluing a solid wire to the buss of a solar 

cell. 
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Figure 32.   Wire Glue Used on Solar Cell. 

Finally, with the cells arranged on the wing, we 

looked at different ways to connect them in series.  It was 

essential to make the connections short to minimize the re-

sistance in the conductors.  The best wiring connection 

that we came up with is seen in Figure 33. 

 

Figure 33.   Solar Panel Wiring.  
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The final product is seen in Figure 34.  The solar 

cells were attached to the wing with double sided tape.  As 

mentioned earlier a second layer of carpet protection film 

was used to secure the solar cell arrangement on the wing. 

 

Figure 34.   Solar Panel.    

F. MAXIMUM POWER POINT TRACKER 

As described in Chapters III and IV, different factors 

influenced the output of a solar cell, such as irradiance, 

temperature, angle of incidence, etc. Hence, the output 

power from the solar panel will always be fluctuating 

throughout the day. In order to get the most power from the 

panel, it was necessary to add into our circuitry a MPPT.   

Additionally, we knew that the output voltage of the 

solar panel would be lower than the voltage required to 

charge the battery.  Therefore, we needed a DC-DC power 

converter to continuously boost the voltage to 25.2V which 

was the voltage of the Li-ion battery. 

While looking through the products and their respec-

tive manufacturers used in previous research [5], we came 

across a GVB24-6 Boost Solar Charge Controller from GENASUN 

Advanced Energy Systems, seen in Figure 35, which included 

both needed components, MPPT and boost converter.  Since 
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the voltage of a Raven’s fully charged battery was 25.2V, 

we asked the manufacturer to program the boost solar charge 

controller to that voltage value.  In Table 5, the original 

specifications of the component are displayed. 

 
Figure 35.   GV26-4 Boost Solar Charge Controller. 
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Table 5.   GV24-6 Boost Specifications (After [41]). 

Tracking Efficiency 99% 
Electrical Efficiency (typical) 90-96% 
Input Current (Maximum) 6A 
Panel Voltage (Voc) 0-63V 
Min. Panel Voltage for Charging 5V 
Night Consumption 6mA 
Absorption Voltage 28.4V 
Float Voltage 27.6V 
Temperature Compensation 56mV/°C 

Compact and Light  5.5x2.5x1.2" (14x6.5x3.1 cm) / 6.5 
oz. (185 g) 

Connections  4-pos. clamp-style terminal block 
for 10-30AWG wire 

Environmental  Stainless Hardware 
Nickel-Plated Brass Contacts 

Additional 
Features  

Multi-Stage Charging  
Temperature Compensation  
Can Charge from a DC Source  
Automatic Recovery from Fault Con-
ditions  
LED Status Indicator  
Reverse Panel Protection  
Overload Protected (No blown fus-
es!)  
Over-Temperature Protected with 
Current Foldback  
Shade-Tolerant Tracking  
Suitable for Gel/AGM/Sealed Lead-
Acid Batteries  
Surface-Mountable Box  
Reverse Battery Protection  
Custom Voltages Available for Lith-
ium and Other Batteries  

 

One concern we had when looking for electronic compo-

nents was their weight and size.  The MPPT/power converter 

(Solar Charge Controller) weighed 6.5-Oz, but without the 

casing it weighed only 3.6-Oz.  We preferred to use it 

without the casing. The dimensions of the charge controller 

were 14cmx6.5cmx3.1cm.  Besides the wing and the horizontal 

stabilizer, the Raven RQ-11B did not provide any other flat 

surface where additional components could be mounted.  In-

ternal compartments of the aircraft were taken with other 

payload components.  The only area available was on top of 
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the fuselage, as seen in Figure 36.  This location was 

ideal because it had enough space for the charge controller 

and the balancer charger and because it was close to the 

solar panel and to the battery, which reduced the amount of 

wiring needed for connections. 

 

Figure 36.   Integrated Circuit on Fuselage of Raven RQ-11B. 

G. BALANCER CHARGER 

As mentioned in Chapter IV, Li-ion batteries required 

extreme caution when charging. Since our objective was to 

recharge the battery during flight, it was important to en-

sure that the charge for each battery cell inside the bat-

tery pack was correctly balanced.  To do that, we were re-

quired to use a balancer charger.  There were many products 

available to choose from, but we decided to purchase the 

Ultra-Balancer from Common Sense RC.  This balancer charger 

was designed to charge 2-6 Lithium Polymer battery packs.  

This balancer was ideal for this project because it was 

small in size and light-weight.  Its dimensions were 4.1cm 

X 6.2cm and weighed 0.5-Oz.  Another positive factor that 

helped gain confidence about this product was the fact it 

had been previously experimented with by engineers from Na-
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val Air Warfare Station in China Lake, California.  They 

obtained positive results and recommended this product.  

The balancer charger is shown in Figure 37. 

 

Figure 37.   Ultra-Balancer Charger. 

Another benefit of the balancer charger is that it 

contains three different color LED lights that makes the 

user aware of whether the voltage of one of the cells is 

below 3.2V, above 3.7V, or if they are equally charged, 

when conducting stationary tests.  It has also six addi-

tional LED lights for every cell in the battery that alerts 

the user of any cell that higher voltage. 

H. SYSTEM INTEGRATION 

The final step in the design was the assembly and in-

tegration of all the components.  The final circuitry de-

sign is shown in Figure 38.  In the diagram below, the so-

lar panel is connected to the MPPT.  A diode P/N: HEP170 

from Motorola was placed on the positive terminal of the 
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solar panel to prevent the battery from charging the solar 

panel, and thus, damaging the solar cells.  The MPPT and 

the balancer charger were connected to the battery while 

the battery was powering the Raven UAV.   

 

Figure 38.   System Configuration. 

Once the solar panel was constructed and all the other 

components were put in place, it was time to determine the 

amount of input power we would be getting from the sun and 

determine to whether it would actually extend the endurance 

of the battery.  The next chapter shows the tests and re-

sults obtained from this circuit. 
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VI. TEST AND ANALYSIS 

A. LABVIEW  

To facilitate our data collection, we needed some type 

of software that would enable us to take voltage and cur-

rent readings simultaneously and autonomously between the 

solar panel (SP) and the MPPT, and between the battery and 

the Raven. For this purpose, we opted to use LABVIEW.  From 

Figure 39, it can be seen how we connected our test equip-

ment. 

 

Figure 39.   Test Equipment Connection. 

LABVIEW is a graphical system design platform that al-

lows engineers and scientists to interface with any meas-

urement device and design tool. It is a programming lan-

guage that has common programming devices like data types 

(numbers, strings, arrays, etc.), structures (For Loops, 

While Loops, case structures, event handling) and functions 
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(file I/O, comparisons, etc.) [42]. Nevertheless, it does 

not require any programming experience since it has built-

in functions for common tasks such as data acquisition and 

analysis, and a wide array of tool kits and modules that 

offer specific functionality in areas such as real-time 

control, RF design, motion control and machine vision, etc. 

For our experiment, we used two FLUKE multi-meters to 

interface with LABVIEW.  Each one of these measurement de-

vices had the option of taking two readings, simultane-

ously.  We placed one multi-meter between the solar panel 

and the MPPT, and the other between the battery and the Ra-

ven UAV.  We programmed LABVIEW so that it would take the 

two readings from each multi-meter every one second with 

use of a time stamp function.  Additionally, we created an 

alarm function that would signal if the acquired battery 

voltage reading went below 21.2V.  Finally, we added a 

chart that would enable to see how much power would be con-

sumed by the battery, and how much power would be coming in 

from the solar panel.  

The front panel of our program in LABVIEW is shown in 

Figure 40.  The front panel displays controls and indica-

tors. For our test, we used two separate LABVIEW front pan-

els and block diagrams.  The block diagram which is where 

the program was created is shown in Figure 41.  
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Figure 40.   LABVIEW Front Panel. 
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Figure 41.   LABVIEW Block Diagram. 
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B. REFERENCE SOLAR CELL 

A silicon solar cell was used to measure the intensity 

of the sunlight at every test to ensure that the tests were 

done under similar conditions.  The silicon cell was con-

nected to a multi-meter set to measure current and it was 

placed next to the solar panel and with the same angle fac-

ing the sun.  Our tests were normally conducted between 

11:00AM and 3:00PM and the readings were always between 

0.27A and 0.31A.  The highest current readings observed 

were in Carmel Valley, California.  There, the current from 

the silicon cell stayed between 0.30A and 0.31A.  The ref-

erence solar cell is shown in Figure 42. 

 

Figure 42.   Reference Solar Cell (From [5]). 

C. BATTERY CAPACITY TESTS 

The Raven RQ-11B comes with six Li-ion polymer cells 

inside a battery pack.  It has a fully charged voltage of 

25.2V and a minimum voltage of 21V.  It has a capacity of 4 

Ampere hours (Ah) [17].  

To better understand its capacity, we ran different 

tests while the battery was connected to the Raven at dif-

ferent throttle settings, which represented the actual op-
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erating speeds of the UAV during regular missions.  These 

settings were chosen by the Raven’s operator, Mr. Scott 

Brown, a technician from the Naval Air Warfare Center Weap-

ons Division, in China Lake, California [43]. 

We first obtained battery capacity and discharge rate 

values at 55%, 65%, 70%, and 100% throttle levels.  Table 6 

shows these results.  We did several tests at each individ-

ual level and averaged them to ensure that our values were 

accurate.  Table 6 also displays the capacity of the bat-

tery at different throttle levels. 

Table 6.   Raven Battery Capacity Bench Test. 

Throttle 55% 65% 70% 100% 

Avg. Current (A) 1.32 1.64 1.75 5.43 

Avg. Voltage (V) 22.7 22.96 22.4 21.72 

Time (hours) 1 1 1 1 

Avg. Resistance 17.19 14 12.80 4 

Capacity (Ah) 1.32 1.64 1.75 5.43 

 

The capacity C  of the battery was calculated by multi-

plying the average current avgI  by the time t it took for the 

battery to reach 21.2V, as seen in equation 6.1 [44].   

 avgC I t   (5.5) 

For our cut-off low voltage, we used a conservative 

battery voltage value of 21.2V to ensure the battery would 

not over-discharge; thus, running the risk of damaging the 

battery, as it was explained in the previous chapter. 
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D. ENERGY CALCULATIONS 

According to the Raven’s operator, during launching 

and up to the point where the SUAV reaches altitude, the 

Raven is operated at 100% throttle.  This stage takes about 

10 minutes.  Once a specific altitude is reached, the op-

erator reduces its speed controlling the throttle between 

55% and 65% for the remaining of the mission.  With this in 

mind, it was time to calculate the amount of energy the 

battery would use during the initial 10 minutes at 100% and 

the energy used for the rest of the time at 55%, 65%, and 

70%.  Our initial calculations were determined at 55% 

throttle, initially.  Our goal was to determine the amount 

of time the Raven would fly under those throttle condi-

tions.  

1. Fully Charged Battery 

We began by calculating the energy of a fully charged 

battery, given the capacity of 4Ah, by multiplying the vol-

tage of the battery times its capacity.  

 E V C   (5.6) 

In equation 6.2, E  represents energy in Watt hours (Wh), 

V is the voltage of the battery in Volts, and C  is its ca-

pacity in Ampere hours.  We did not intend to use all of 

its capacity because the minimum voltage was 21V.  However, 

we decided to use a more conservative value 21.2V to ensure 

we do not go below the minimum required voltage set by the 

manufacturer.  Hence, we used 85% of its capacity which 

gave us 3.4Ah.  Additionally, we used the minimum allowable 

battery voltage reading of 23.9V, which was the fully 

charged voltage reading when the battery was connected to 

the load, instead of the 25.2V given by the manufacturer.  
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We did this because wanted to get a value that would repre-

sent the actual condition of the battery as it prepares to 

launch.  The maximum and actual minimum energy results are 

shown in Table 7. 

Table 7.   Energy of a Fully Charged Battery. 

  Voltage (V) Capacity (Ah) Energy (Wh) Energy (J) 

Maximum 25.2 4 100.8 363K 

Actual (min) 21.2 3.4 72.08 260K 
 

2. Raven’s Energy Consumption 

Next, we calculated the energy that the Raven would 

use in a single mission at full throttle (100%) for the 

first 10 minutes.  Using equation (6.2) and the values ob-

tained in Tables 6 and 7, we calculated the energy to be:   

    23.9 5.43 0.1667 21.63E V Ah h Wh   (5.7) 

In our previous tests, we noticed that after running 

the Raven for 10 minutes at full throttle the battery volt-

age usually dropped about 1V.  Thus, we used this fact to 

calculate the energy at 55% power. 

    22.9 1.32 1 30.23E V Ah h Wh   (5.8) 

 Notice that after 1 hour and 10 minutes the total en-

ergy used was calculated to be 51.86Wh.  The energy values 

calculated at these throttle levels can be seen in Table 8.   

Table 8.   Energy and Time Used at 100% and 55% throttle.  

  100% 55% Subtotal Extra Time Total 

Energy (Wh) 21.63 30.23 51.86    

Time 10min 1h 1h 10min 40min 1h 50min 
 

Since the energy of a fully charged battery was 72.08 

Wh (Table 7), there was 20.22Wh of energy left which indi-

cated that the Raven would run for another 40 minutes at 
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55% throttle.  Hence, the battery would have a total time 

of duration of 1 hour and 50 minutes before it discharges 

down to 21.2V under 100% and then 55% throttle settings. 

Similarly, as seen in Tables 9 and 10, we calculated 

the amount of time the battery would take to discharge from 

100% to 65% and from 100% to 70% throttle levels. 

Table 9.   Energy Used at 100% and 65% throttle.  

  100% 65% Subtotal Extra Time Total 

Energy (Wh) 21.63 37.56 59.19    

Time 10min 1h 1h 10min 21min 1h 31min 

Table 10.   Energy Used at 100% and 70% throttle.  

  100% 70% Subtotal Extra Time Total 

Energy (Wh) 21.63 40.08 61.70    

Time 10min 1h 1h 10min 16min 1h 26min 

3. Load Energy Consumption 

Before we integrated our solar panel into the Raven’s 

circuitry, we wanted to implement our calculation with a 

load similar to the Raven’s payload to ensure that our me-

thod would work.  For this, we obtained two high wattage 

resistors of 3.8-Ohms and 9.5-Ohms.  We used the 3.8-Ohms 

resistor to simulate the Raven UAV operating at 100% throt-

tle, and the 9.5-Ohms resistor to simulate operation at 

55%, respectively.  Figure 43 shows the high power resis-

tors used to represent the Raven’s payload.  The 3.8-Ohms 

resistor is at the top, and the 9.5-Ohm resistor is shown 

at the bottom. 
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Figure 43.   High Power Resistors. 

Since our resistances were not exactly the same as 

those obtained in Table 6, we had to calculate a new capac-

ity value /Battery w LoadC  using the ratio of resistances, as seen 

in equation 6.5, where RavenR  represented the resistance of 

the Raven, High wattageR   was the resistance of the high power re-

sistor, and /Battery w RavenC represented the capacity obtained pre-

viously. 

 

 / /
Raven

Battery w Load Battery w Raven
high wattage

R
C C

R 

   (5.9) 

  

From Table 11, it can be seen the new battery capacity 

values for the corresponding similar loads. 
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Table 11.   Battery Capacity Similar Load. 

Throttle R Raven R Load C w/ Raven C w/ Load 

100% 4Ω 3.8Ω 5.43 Ah 5.71 Ah 

55% 17.25Ω 13.3Ω 1.32 Ah 1.71 Ah 
 

With these capacity values, we calculated the energy 

used by battery under these comparable loads using equa-

tions 6.3 and 6.4.  The energy used by the battery under a 

similar load to the Raven’s is shown in Table 12.   

Table 12.   Energy Used and Battery Endurance w/ Similar Load. 

Throttle Level 100% 55%  55% 

Elapsed Time (min) +10 +60  +16 

Energy Fully Charged Battery   72.08  

Energy Out - Load (Wh)  22.79 39.15 61.94 10.14 

Energy In – Solar Panel (Wh)    10.14 

Energy Left after 1hr 10 min (Wh)   10.14  

Energy Left after extra 16 min (Wh)    0.00 

Total Elapsed Time 86 min = 1 hr 26 min     

 

Since the energy of a fully charged battery was 

72.08Wh (Table 7), there were 10.14Wh of energy left, which 

indicated that the Raven would run for another 16 minutes.  

Therefore, the battery would have a total time of duration 

of 1 hour and 26 minutes before it discharges down to 21.2V 

at 100% and 55% throttle settings. 
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E. BATTERY ENDURANCE TESTS 

1. Raven’s Energy Consumption 

To ensure our calculations taken in the previous sec-

tion were correct, we tested the battery while connected to 

the Raven and let it run under those settings (100-55% 

throttle).  A comparison between our calculated time, from 

section C-2, and the actual time is shown in Table 13. 

Table 13.   Calculated vs. Actual Time (100-55%). 

  Time 

Calculated 1h 50min 

Actual Test 1h 53min 

 

As expected, a small difference was observed mostly 

due to the different voltage levels among fully charged 

batteries.  As seen in Figure 44, the battery power con-

sumption at 100% to 55% throttle lasted 6,780-seconds. 
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Figure 44.   Power Consumption 100% to 55% Raven.  
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In similar fashion, we tested the power consumption of 

the battery while connected to the Raven at 100% and 65% 

and at 100% and 70% throttle levels.  The relationship be-

tween the calculated times and the actual times obtained 

from the test is observed in Tables 14 and 15. 

Table 14.   Calculated vs. Actual Time (100-65%). 

  Time 

Calculated 1h 31min 

Actual Test 1h 34min 
 

Table 15.   Calculated vs. Actual Time (100-70%). 

  Time 

Calculated 1h 26min 

Actual Test 1h 26min 
 

Again, we observed a small difference between our cal-

culated values and our actual test, but for the most part 

it indicated that our calculations were correct.  The power 

consumption of the battery under those specific throttle 

settings are seen in Figures 45 and 46, respectively.  In 

Figure 45, we noticed how the battery of the Raven lasted 

5,640-seconds, while operating at 100% and then at 65% 

throttle.  
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Figure 45.   Power Consumption 100% to 65% Raven.  

In Figure 46, we observed that the battery of the Ra-

ven UAV lasted 5,160-seconds, while operating at 100% and 

then at 70% throttle settings. 
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Figure 46.   Power Consumption 100% to 70% Raven.  
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2. Load Energy Consumption 

Again, to ensure our calculations from section C-3 

were correct, we tested the battery while connected to the 

load similar to the Raven’s.  A comparison between our cal-

culated time and the actual time is observed in Table 16. 

Table 16.   Calculated vs. Actual Time Similar Load. 

  Time 

Calculated 1h 26min 

Actual Test 1h 29min 

 

The results in Table 16 show that our computations 

were correct.  In Figure 47, we observe the power consump-

tion of the battery while connected to a similar load.  

Again, this test represented the Raven RQ-11B load operat-

ing at 100% throttle for the first 10 minutes and at 55% 

throttle for the rest of the time.  In Figure 47, it can be 

seen that the power of the battery lasted 5,340-seconds un-

der a similar load 
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Figure 47.   Power Consumption 100% to 55% Similar Load. 



 84

F. BATTERY ENDURANCE CALCULATIONS WITH SOLAR PANEL 

1. Load with Solar Panel 

After confirming that our calculations matched our 

test results, we wanted to add the input from the solar 

panel into our calculations.  Previously, we conducted sev-

eral tests to determine the IV curve of the solar panel 

that we built.  The IV curve obtained from our solar panel 

on 3 August 2010 is shown in Figure 48. 
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Figure 48.   IV Curve Plot for Wing Solar Panel. 

In Figure 48, we noticed that the knee of curve indi-

cated that the maximum power was somewhere around 17W.  In 

addition, we noted that throughout most part the day, the 

solar panel would provide 12W of power to the battery.  

Therefore, we used 17Wh and 12Wh in our calculations as our 

energy input boundaries to represent our best and worst 

case energy input in relation to the Monterey Area.  The 
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amount of time the battery would last while connected to a 

similar load would depend on the amount of energy left in 

it. 

Following the same calculations as in the previous 

sections, we obtained the amount of time it would take for 

the battery to discharge to 21.2V, as seen in Table 17. 

 

Table 17.   Battery Endurance Calculation Load w/SP (17Wh). 

Throttle Level 100% 55%   55% 55% 55% 55% 

Elapsed Time (min) 10 60   45 19 8 3 

Energy Fully Charged Battery      72.08           

Energy Out - Load (Wh)  22.77 39.16 61.93 29.60 12.59 5.36 2.28 

Energy In – Solar Panel (Wh) 2.84 17.00 19.84 12.85 5.47 2.33 0.99 

MPPT 2% Power Loss 0.06 0.34 0.40 0.26 0.11 0.05 0.02 

Energy Gain (Wh)      29.60           

Energy Gain (Wh)        12.59        

Energy Gain (Wh)           5.36     

Energy Gain (Wh)              2.28   

Energy Gain (Wh)                0.97 

Average Energy Input (Wh) 17.00 17.00   17.00 17.00 17.00 17.00

Total Elapsed Time (min) 146             

Total Elapsed Time  (hr)(min) 2 26             
 

Since the total energy of the battery (Table 7) was 

72.08Wh, it meant that the battery would have 29.60Wh of 

energy left.  This would give us an additional 45 minutes 

to the time obtained in Table 12, i.e., only if the solar 

panel would stop providing energy.  Nevertheless, we ex-

pected the solar panel to be connected to the battery dur-

ing those extra 45 minutes; hence, overall we would get ad-

ditional 30 minutes of energy at 17Wh of constant input.  

As a result, our calculations predicted 60 minutes of extra 

time, which total 2 hours and 26 minutes compared to the 1 
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hour and 26 minutes given by the battery alone (Table 12). 

Overall, we estimated a 70% improvement in battery endur-

ance.    

Following the same calculation method seen in Table 

17, we noticed that for an average energy input of 12Wh, we 

would get a total of 36 minutes of extra time, giving a to-

tal of 122 minutes or 2 hours and 2 minutes of battery en-

durance. In this case, we observed a 42% improvement in 

battery endurance.  These calculations are shown in Table 

18. 

Table 18.   Battery Endurance Calculation Load w/SP (12Wh).  

Throttle Level 100% 55%   55% 55% 55% 55% 

Elapsed Time (min) 10 60   37 11 3 1 

Energy Fully Charged Battery      72.08           

Energy Out - Load (Wh)  22.77 39.16 61.93 23.88 7.17 2.15 0.65 

Energy In – Solar Panel (Wh) 2.00 12.00 14.00 7.32 2.20 0.66 0.20 

MPPT 2% Power Loss 0.04 0.24 0.28 0.15 0.04 0.01 0.00 

Energy Gain (Wh)      23.88           

Energy Gain (Wh)        7.17        

Energy Gain (Wh)           2.15     

Energy Gain (Wh)              0.65   

Energy Gain (Wh)                0.19 

Average Energy Input (Wh) 12.00 12.00   12.00 12.00 12.00 12.00

Total Elapsed Time (min) 122             

Total Elapsed Time  (hr)(min) 2 2             

 

In Table 19, we can appreciate the difference in bat-

tery endurance between our calculations with and without 

solar panel at certain energy input levels.  As explained 

before, we used 12Wh and 17Wh as our low and maximum input 

energy levels. 
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Table 19.   Battery Endurance w/Load.  

Calculations 
Energy IN 
from SP Time Improvement 

Load w/o SP 0Wh 1h 26min 0% 

Load w/ SP 12Wh 2h 2min 42% 

Load w/ SP 17Wh 2h 26min 70% 

2. Raven with Solar Panel (100%-55%) 

Similarly, it was necessary to calculate the energy 

going into the battery and the energy coming out of the 

battery to determine the amount of time the battery would 

last.   

From Table 8, we knew that the energy used by the Ra-

ven at 100% for the first 10 minutes was 21.63Wh and 

30.23Wh at 55% for 1 hour; hence, we estimated the time the 

battery would last, as seen in Tables 20 and 21. To better 

estimate the time, we made our calculations using a low en-

ergy average input value of 12Wh, to represent worst ir-

radiance conditions, and 17Wh, to represent sunny condi-

tions.  In Table 20, we observe the results obtained for an 

average input energy of 12Wh.  From Table 21, it can be 

seen the results obtained for an average input of 17Wh. 
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Table 20.   Battery Endurance Calculation Raven w/SP (100%-55% 
Throttle) 12Wh Energy Input. 

Throttle Level 100% 55%   55% 55% 55% 55% 55% 55% 

Elapsed Time (min) 10 60   67 26 10 4 2 1 

Energy Fully Charged Battery      72.08               

Energy Out - Raven (Wh)  21.63 30.23 51.86 33.95 13.21 5.14 2.00 0.78 0.30

Energy In – Solar Panel (Wh) 2.00 12.00 14.00 13.48 5.24 2.04 0.79 0.31 0.12

MPPT 2% Power Loss 0.04 0.24 0.28 0.27 0.10 0.04 0.02 0.01 0.00

Energy Gain (Wh)      33.95               

Energy Gain (Wh)        13.21            

Energy Gain (Wh)           5.14         

Energy Gain (Wh)              2.00       

Energy Gain (Wh)                0.78     

Energy Gain (Wh)                  0.30   

Energy Gain (Wh)                    0.12

Average Energy Input (Wh) 12.00 12.00   12.00 12.00 12.00 12.00 12.00 12.00

Total Elapsed Time (min) 180                 

Total Elapsed Time (hr)(min) 3 0                 
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Table 21.   Battery Endurance Calculation Raven w/SP (100%-55% Throttle)  
17Wh Energy Input. 

Throttle Level 100% 55%   55% 55% 55% 55% 55% 55% 55% 

Elapsed Time (min) 10 60   79 43 24 13 7 4 2 

Energy Fully Charged Battery      72.08                 

Energy Out - Raven (Wh)  21.63 30.23 51.86 39.66 21.86 12.05 6.64 3.66 2.02 1.11 

Energy In – Solar Panel (Wh) 2.84 17.00 19.84 22.31 12.29 6.78 3.73 2.06 1.13 0.63 

MPPT 2% Power Loss 0.06 0.34 0.40 0.45 0.25 0.14 0.07 0.04 0.02 0.01 

Energy Gain (Wh)      39.66                 

Energy Gain (Wh)        21.86              

Energy Gain (Wh)           12.05           

Energy Gain (Wh)              6.64         

Energy Gain (Wh)                3.66       

Energy Gain (Wh)                  2.02     

Energy Gain (Wh)                    1.11   

Energy Gain (Wh)                      0.61 

Average Energy Input (Wh) 17.00 17.00   17.00 17.00 17.00 17.00 17.00 17.00 17.00

Total Elapsed Time (min) 243                   

Total Elapsed Time  (hr)(min) 4 3                   

 



 90

As seen in Table 22, our calculations predicted that, 

under those specific average energy input conditions, the 

Raven UAV with solar panel can last 64% and 121% longer, 

compared to the almost two hours that it will endure with-

out a solar panel. 

Table 22.   Battery Endurance Raven w/SP (100%-55%). 

Calculations 
Energy IN 
from SP Time Improvement 

Raven w/o SP 0Wh 1h 50min 0% 

Raven w/ SP 12Wh 3h  64% 

Raven w/ SP 17Wh 4h 3min 121% 
 

3. Raven with Solar Panel (100%-65%) 

After obtaining the calculations for the Raven while 

operating at 100% and 55% throttle levels with a solar pan-

el attached, it was necessary to do the same thing but for 

the next set of throttle settings (100%-65%), described by 

the Raven’s operator.  The energy used and battery endur-

ance under a constant energy input of 12Wh and 17Wh are 

shown in Tables 23 and 24, respectively. 
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Table 23.   Battery Endurance Calculation Raven w/SP (100%-65% 
Throttle) 12Wh Energy Input. 

Throttle Level 100% 65%   65% 65% 65% 65% 

Elapsed Time (min) 10 60   43 13 4 1 

Energy Fully Charged Battery      72.08           

Energy Out - Raven (Wh)  21.63 37.56 59.19 26.62 8.34 2.61 0.82 

Energy In – Solar Panel (Wh) 2.00 12.00 14.00 8.51 2.66 0.83 0.26 

MPPT 2% Power Loss 0.04 0.24 0.28 0.17 0.05 0.02 0.01 

Energy Gain (Wh)      26.62           

Energy Gain (Wh)        8.34        

Energy Gain (Wh)           2.61     

Energy Gain (Wh)              0.82   

Energy Gain (Wh)                0.26 

Average Energy Input (Wh) 12.00 12.00   12.00 12.00 12.00 12.00

Total Elapsed Time (min) 132             

Total Elapsed Time  (hr)(min) 2 12             
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Table 24.   Battery Endurance Calculation Raven w/SP (100%-65% Throttle) 17Wh Energy Input. 

Throttle Level 100% 65%   65% 65% 65% 65% 65% 65% 

Elapsed Time (min) 10 60   52 23 10 5 2 1 

Energy Fully Charged Battery      72.08               

Energy Out - Raven (Wh)  21.63 37.56 59.19 32.34 14.34 6.36 2.82 1.25 0.56

Energy In – Solar Panel (Wh) 2.84 17.00 19.84 14.64 6.49 2.88 1.28 0.57 0.25

MPPT 2% Power Loss 0.06 0.34 0.40 0.29 0.13 0.06 0.03 0.01 0.01

Energy Gain (Wh)      32.34               

Energy Gain (Wh)        14.34            

Energy Gain (Wh)           6.36         

Energy Gain (Wh)              2.82       

Energy Gain (Wh)                1.25     

Energy Gain (Wh)                  0.56   

Energy Gain (Wh)                    0.25

Average Energy Input (Wh) 17.00 17.00   17.00 17.00 17.00 17.00 17.00 17.00

Total Elapsed Time (min) 163                 

Total Elapsed Time  (hr)(min) 2 43                 
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In Table 23, we observed a 45% improvement of the bat-

tery endurance thanks to the solar panel.  The battery was 

expected to last 41 minutes longer, than without solar 

cells.  In Table 24, the improvement was even higher due to 

the high input energy of 17Wh.  All these observations are 

summarized in Table 25.    

Table 25.   Battery Endurance Raven w/SP (100%-65%). 

Calculations 
Energy IN 
from SP Time Improvement 

Raven w/o SP 0Wh 1h 31min 0% 

Raven w/ SP 12Wh 2h 12min 45% 

Raven w/ SP 17Wh 2h 43min 79% 
 

4. Raven with Solar Panel (100%-70%) 

Finally, we did the same calculation with a higher 

throttle setting of 70% to cover all the speed control lev-

els chosen by the operator.  In Table 26, we expected the 

battery to last 36 minutes longer than without solar cells.  
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Table 26.   Battery Endurance Calculation Raven w/SP (100%-70% 
Throttle) 12Wh Energy Input. 

Throttle Level 100% 70%   70% 70% 70% 70% 

Elapsed Time (min) 10 60   36 11 3 1 

Energy Fully Charged Battery      72.08           

Energy Out - Raven (Wh)  21.63 40.08 61.70 24.10 7.07 2.08 0.61

Energy In – Solar Panel (Wh) 2.00 12.00 14.00 7.22 2.12 0.62 0.18

MPPT 2% Power Loss 0.04 0.24 0.28 0.14 0.04 0.01 0.00

Energy Gain (Wh)      24.10           

Energy Gain (Wh)        7.07        

Energy Gain (Wh)           2.08     

Energy Gain (Wh)              0.61   

Energy Gain (Wh)                0.18

Energy Gain (Wh)                  

Energy Gain (Wh)                  

Energy Gain (Wh)                  

Average Energy Input (Wh) 12.00 12.00   12.00 12.00 12.00 12.00

Total Elapsed Time (min) 121             

Total Elapsed Time  (hr)(min) 2 1             
 

Similarly, in Table 27 we expected a greater improve-

ment since the energy input was higher.  This time, the 

battery could last an extra hour, according to our calcula-

tions. 
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Table 27.   Battery Endurance Calculation Raven w/SP (100%-70% 
Throttle) 17Wh Energy Input. 

Throttle Level 100% 70%   70% 70% 70% 70% 70% 70% 

Elapsed Time (min) 10 60   45 19 8 3 1 1 

Energy Fully Charged Battery      72.08               

Energy Out - Raven (Wh)  21.63 40.08 61.70 29.82 12.40 5.15 2.14 0.89 0.37

Energy In – Solar Panel (Wh) 2.84 17.00 19.84 12.65 5.26 2.19 0.91 0.38 0.16

MPPT 2% Power Loss 0.06 0.34 0.40 0.25 0.11 0.04 0.02 0.01 0.00

Energy Gain (Wh)      29.82               

Energy Gain (Wh)        12.40            

Energy Gain (Wh)           5.15         

Energy Gain (Wh)              2.14       

Energy Gain (Wh)                0.89     

Energy Gain (Wh)                  0.37   

Energy Gain (Wh)                    0.15

Energy Gain (Wh)                      

Average Energy Input (Wh) 17.00 17.00   17.00 17.00 17.00 17.00 17.00 17.00

Total Elapsed Time (min) 146                 

Total Elapsed Time  (hr)(min) 2 26                 

 

In Table 28, we can compare the battery endurance cal-

culated for the Raven with and without solar cells and its 

corresponding improvement. 

Table 28.   Battery Endurance Raven w/SP (100%-70%). 

Calculations 
Energy IN 
from SP Time Improvement 

Raven w/o SP 0Wh 1h 25min 0% 

Raven w/ SP 12Wh 2h 1min  42% 

Raven w/ SP 17Wh 2h 26min 72% 
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G. BATTERY ENDURANCE TESTS WITH SOLAR PANEL 

Our initial test was conducted in the Monterey Bay 

Area, but due to the variable weather conditions, we had to 

find a way to take the test equipment to a location where 

clear skies and good sunlight could be available throughout 

the day.  As seen in Figure 49, we found a way to mount all 

the test equipment on a mid-size pick-up and travelled to 

Carmel Valley and Salinas in California, where the weather 

conditions were more accommodating for our research. 

 

Figure 49.   Mobile Laboratory. 

1. Load with Solar Panel 

To validate the calculations obtained in section E-1, 

it was necessary to test the solar panel while connected to 

the MPPT, battery, and to the load.  We did two tests on 
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three separate days.  Test 1 was interrupted due to heavy 

clouds and lack of sunlight; hence, it was completed in two 

days.   

As seen in Figure 50, the input energy coming from the 

solar panel into the battery was different each test day.  

During the first test, we observed an initial average input 

energy of 16.45Wh. During the second part of the test, we 

noticed that the energy input increased and stayed fixed 

around 17.24Wh.  Using the same method of calculation as in 

the previous sections, we decided to use the average of 

these two values (16.85Wh) as our energy input from our so-

lar panel.  Our estimated time of duration of 2 hours and 

25 minutes is shown in Table 29. 

Table 29.   Battery Endurance Calculation Load w/SP Test 1. 

Throttle Level 100% 55%   55% 55% 55% 55% 

Elapsed Time (min) 10 60   45 19 8 3 

Energy Fully Charged Battery      72.08           

Energy Out - Load (Wh)  22.77 39.16 61.93 29.42 12.41 5.23 2.21 

Energy In – Solar Panel (Wh) 2.81 16.85 19.66 12.66 5.34 2.25 0.95 

MPPT 2% Power Loss 0.06 0.34 0.39 0.25 0.11 0.05 0.02 

Energy Gain (Wh)      29.42           

Energy Gain (Wh)        12.41        

Energy Gain (Wh)           5.23     

Energy Gain (Wh)              2.21   

Energy Gain (Wh)                0.93 

Average Energy Input (Wh) 16.85 16.85   16.85 16.85 16.85 16.85

Total Elapsed Time (min) 145             

Total Elapsed Time  (hr)(min) 2 25             

 

The second test had an average input energy of 

14.55Wh.  Similarly, we use this value to calculate our 

time of duration.  The time duration of 2 hours and 13 min-

utes is reflected in Table 30. 
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Table 30.   Battery Endurance Calculation Load W/SP Test 2. 

Throttle Level 100% 55%   55% 55% 55% 55% 

Elapsed Time (min) 10 60   41 15 5 2 

Energy Fully Charged Battery      72.08           

Energy Out - Load (Wh)  22.77 39.16 61.93 26.79 9.76 3.55 1.29 

Energy In – Solar Panel (Wh) 2.43 14.55 16.98 9.96 3.63 1.32 0.48 

MPPT 2% Power Loss 0.05 0.29 0.34 0.20 0.07 0.03 0.01 

Energy Gain (Wh)      26.79           

Energy Gain (Wh)        9.76        

Energy Gain (Wh)           3.55     

Energy Gain (Wh)              1.29   

Energy Gain (Wh)                0.47 

Average Energy Input (Wh) 14.55 14.55   14.55 14.55 14.55 14.55

Total Elapsed Time (min) 133             

Total Elapsed Time  (hr)(min) 2 13             
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Figure 50.   Power Input to Load w/SP Test. 

In Figure 51, we decided to plot the power consumption 

of the battery without the solar panel, as seen in section 

D-2 to compare it with the actual test results obtained 

with the solar panel.  During test 1, the power of the bat-
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tery was consumed in 2 hours and 24 minutes.  On test day 2 

the battery lasted 2 hours and 10 minutes.   
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Figure 51.   Power Consumption Load w/ Solar Panel. 

Evidently, the different input energy values greatly 

affected the endurance of the battery.  In Table 31, we 

show all the calculated and actual test results obtained 

from testing of the load that represented the Raven with 

and without the solar panel.  Here again, we noted that our 

computations came very close to the real values obtained 

from the experiment. 
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Table 31.   Calculated vs. Actual Time.  

 
Energy IN 
from SP 

Calculated 
Time 

Calculated 
Improvement 

Load w/o SP 0Wh 1h 26min 0% 

Raven w/ SP 14.55Wh 2h 13min  54% 

Raven w/ SP 16.85Wh 2h 25min 69% 

 
Energy IN 
from SP Actual Time 

Actual Im-
provement 

Load w/o SP 0Wh 1h 29min 0% 

Raven w/ SP 14.55Wh 2h 10min  46% 

Raven w/ SP 16.85Wh 2h 24min 62% 

2. Raven with Solar Panel (100%-55%) 

We conducted two tests with the Raven and with solar 

panel at 100% and 55% throttle.  In our first test, we had 

an average energy input of 13.55Wh.  The test was started 

at around 3:00pm.  Unfortunately, 2 hours later the sunny 

conditions began to deteriorate due to the presence of 

heavy clouds; hence, we observed a big drop at the end of 

the test.  During our second test, we noticed an average 

energy input of 12.7Wh.  These two energy input values 

stayed between our calculated range, as previously shown in 

Tables 20 and 21.  The input energy of both test days is 

shown in Figure 52.   
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Figure 52.   Power Input to Raven w/SP 100%-55% Throttle Test. 

In Figure 53, we show the results for the two tests 

with solar panel and compare them with the original power 

consumption test performed without the solar panel at 100% 

to 55% throttle. During the first day, the test lasted 

11,540-seconds which corresponded to 3 hours and 12 min-

utes.  During the second day, the test lasted 3 hours and 5 

minutes.  The difference in time was due to the difference 

in input energy received from the solar panel on both days, 

as seen previously in Figure 52. 
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Figure 53.   Power Consumption Raven w/SP 100%-55% Throttle. 

As in the previous section, we wanted to show the cal-

culated and actual time results at the average energy input 

levels obtained the day of the tests.  These results are 

shown in Table 32. 

Table 32.   Actual Time and Improvement. 

 
Energy IN 
from SP Actual Time Improvement 

Load w/o SP 0Wh 1h 53min 0% 

Raven w/SP Test 1 13.55Wh 3h 12min  70% 

Raven w/SP Test 2 12.70Wh 3h 5min 64% 
 

3. Raven with Solar Panel (100%-65%) 

This was the last test to be conducted and by this 

time, we only had one battery left for the test.  The other 

batteries were accidentally over-discharged and were no 

longer usable.  Moreover, the battery that we used for this 

test was not holding up the energy.  Needleless to say, we 

carried on with the test to see if even under these condi-
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tions, the battery could still last a little longer.  We 

conducted two tests at 100%-65% throttle to see if the en-

durance time of the battery would fall between the calcu-

lated values obtained in Tables 22 and 23.  In Figure 54, 

we noticed that the input energy obtained during the first 

day of the test averaged 11.94Wh.  The average energy input 

during the second test was 10.62Wh.   
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Figure 54.   Power Input to Raven w/SP 100%-65% Throttle Test. 

In Figure 55, we noticed that the first test with the 

battery lasted 1 hour and 53 minutes i.e., 19 minutes 

shorter compared to the projected time of 2 hours and 12 

minutes.  During the second test, the battery lasted 7,606-

seconds which represented 2 hours and 6 minutes, exactly 1-

minute longer than expected.  However, we also noticed that 

the power consumption during the initial 10 minutes at 100% 

was not the same compared to all the other plots.  Addi-

tionally, we observed a square type signal output that re-

flected the consumption of the battery.  As mentioned be-
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fore, we believed that by this time our batteries were 

reaching their end of their life cycles and we could not 

continue performing more tests due to the lack of more 

spare batteries.  Although our experiment values did not 

match our calculated ones, we still observed a small im-

provement.  Nevertheless, we think that more tests need to 

be done at this throttle setting to demonstrate that our 

calculation method is accurate.   
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Figure 55.   Power Consumption to Raven w/SP 100%-65% Throt-
tle. 

The actual time results and improvement observed dur-

ing the test conducted on the Raven with solar panel at 

100% and 65% throttle settings are shown in Table 33. 

Table 33.   Actual Time Results and Improvement. 

 
Energy IN 
from SP Actual Time Improvement 

Raven w/o SP 0Wh 1h 34min 0% 

Raven w/SP Test 1 11.94Wh 1h 53min  20% 

Raven w/SP Test 2 10.62 2h 06min 34% 
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4. Raven with Solar Panel (100%-70%) 

When conducting the test at 100% and 70% throttle, we 

observed an average energy input of approximately 12.5Wh, 

as seen in Figure 56.  . 
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Figure 56.   Power Input Raven w/SP 100-70% Throttle Test. 

Nevertheless, the duration the test lasted 1 hour 58 

minutes, 2 minutes shorter than what we calculated.  The 

overall time that it took for the battery to discharge down 

to 21.2V is seen in Figure 57. 
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Figure 57.   Power Consumption Raven w/SP 100%-70% Throttle. 

Again in Table 34, we showed the actual time obtained 

for the test conducted with the Raven and solar panel at 

100% and 70% throttle settings.  In this case, we still no-

ticed an improvement of 37%. 

Table 34.   Actual Time and Improvement. 

 
Energy IN 
from SP Actual Time Improvement 

Raven w/o SP 0Wh 1h 26min 0% 

Raven w/SP Test 1 12.55 1h 58min  37% 
 

H. OBSERVATIONS 

1. Modified Wing 

As mentioned earlier, the tests conducted in this re-

search were based on the inputs provided by the operator of 

the Raven RQ-11B UAV.  It is important to keep in mind 

that, according to the operator, the Raven UAV requires no 
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power to descend and that its elongated wing provides more 

lift; thus, we can expect the endurance of the Raven to be 

longer.   

The modified wing, without solar cells, was tested on 

10 May 2010, during a flight demonstration at the Concept-

Based Experimentation (CBE) conference at Camp Roberts, 

California.  The flight test lasted an additional time of 

34 minutes.  Hence, according to the sponsors of the pro-

ject, the elongated wing improved the flight time by 37% 

[45].  This means that the improvement in battery endurance 

could be actually higher than calculated, when the Raven 

flies with the solar panel and the modified wing. 

2. Current Test 

After determining the power consumption and the endur-

ance of the battery at 55%, 65%, and 70% throttle settings 

with the solar panel, we were curious to find out what 

would be the throttle level in which the solar panel could 

provide enough energy to run the motor without relying on 

battery power. 

To do this, we connected a third multi-meter between 

the positive terminal of the battery and the point where 

the MPPT and the load were connected, as seen in Figure 58. 
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Figure 58.   Current Test Connection. 

We noted that at 40% throttle the current going into 

the battery and the current going out from the battery was 

the same.  We also noticed that at 15% throttle the solar 

panel was actually driving the motor of the UAV and charg-

ing the battery. 

3. Daily Energy Variations 

Unfortunately, these improvements greatly depend on 

the amount solar energy the wing could absorb during a sin-

gle mission.  The tests conducted in the Monterey area were 

difficult to do because of the constant presence of clouds 

in the area.  On the other hand, the tests conducted in 

Carmel Valley, California were more consistent.  Therefore, 

we anticipated that testing the solar panel in areas where 
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there is a higher index of irradiance, such as the deserts 

of Africa or Arizona; the improvement could be much higher. 

4. Temperature 

Another factor that limited our ability to obtain a 

longer endurance was temperature.  Studies have determined 

that a solar cell loses approximately 2mV for every degree 

Celsius above room temperature [46].  To prove this fact, 

we first measure the temperature and the voltage of a sin-

gle cell under sunlight, while the entire panel was being 

cooled down by a fan.  Using an IR thermometer and a multi-

meter, we obtained 35-degree Celsius and 23.7V.  Then, we 

placed the solar panel on the floor and block any wind cur-

rents to prevent any cooling of the cell.  Using the same 

measurement devices, we obtained 66-degrees Celsius and 

21.6V from the same solar cell.  It is worth mentioning 

that the voltage measured was open circuit voltage.  Over-

all, we observed a difference of 29-degrees Celsius and 

2.1V between both tests.  Using the fact stated in [46] and 

knowing that we had close to a 30-degree Celsius increase 

in temperature and 40 cells on the panel, we expected to 

have a voltage drop of 2.4V.  Thus, we confirmed that tem-

perature drastically affected our input power coming from 

the solar panel by approximately 10%.  Luckily, we are con-

fident that temperature would not play a big roll while the 

solar panel is mounted on the Raven RQ-11B and flying, 

since it would have sufficient wind to keep the solar cells 

cool and because temperature decreases as the Raven reaches 

altitudes above 2,000ft. 
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5. MPPT Fluctuations 

Throughout all of our tests, we observed a constant 

dip in our input power, as it was seen in Figures 50, 52, 

54, and 56. This phenomenon took place every 300-second and 

became one more factor that lessened the input power pro-

vided by the solar panel.  On 2 September 2010, we asked 

the technicians of GENASUN about our constant resetting of 

the MPPT Boost Charge Controller to find out if it was due 

to a defective component.  They replied saying that the ap-

pearance of those dips in the input power is the result of 

the internal operation of the MPPT.  They added that the 

MPPT Boost charge controller periodically auto-zeroes the 

current measurement to ensure proper operation at maximum 

power, but it happens in fractions of a second that has no 

major impact on the average current of the solar panel.  

Hence, the device was operating normally [47].  

6. Weight 

In order to do any modification on the Raven UAV, the 

Aircraft Controlling Custodian Type Commander (ACC/TYCOM) 

needs to authorize it, provided that the alteration would 

not affect the structure and would not impact drastically 

the weight and balance of the aircraft.  For this part of 

the research, a total of weight of 560gr was authorized to 

incorporate solar cells onto the Raven UAV [48].  This 

weight included the modified wing.  We weighed the original 

and the modified wings without solar cells to see the dif-

ference between them.  The original wing weighed 10.4-Oz 

(295gr) and the modified wing weighed 18.6-Oz (527gr), 

i.e., 8.2-Oz (232gr) heavier than the original. 
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The weight for the solar portion of the project, which 

includes the solar cell, MPPT, and balancer charger was on-

ly 221gr.  The overall weight was below the authorized max-

imum given by the ACC/TYCOM. The breakdown of weights by 

item is described in Table 35.  Therefore, our project com-

plied with the modification request. 

Table 35.   Final Added Weight. 

 Weight (Oz) Weight (gr) 
Solar cells 3.7 105 
MPPT 3.6 102 
Balancer Charger 0.5 14 
Modified Wing 8.2 232 
Total 16.0 453 
 

7. Charging Other Batteries 

Another part of this research consisted on recharging 

other batteries using the solar panel as our source of en-

ergy.  For this portion of the research, we decided to use 

three Lithium Polymer (Li-po) batteries of 11.1V.  Their 

capacity was 1200mA, 1300mA, and 1350mA.  Our solar panel, 

as described throughout this chapter, gave us an average 

energy input between 12Wh and 17Wh.  During our tests the 

average input voltage oscillated between 11V and 13V enough 

voltage to charge 11.1V Li-po batteries.  However, since 

the voltage from the solar panel was higher than the volt-

age of the batteries, it was necessary to use a MPPT/buck 

converter that would keep the voltage from overcharging the 

batteries.  The MPPT used for this test was the GV-4 Low 

Power Charge Controller from GENASUN used in previous the-

sis work [5].  This MPPT was programmed to charge up to 

12.5V.  Additionally, we used a balancer charger to ensure 

that every cell in the battery would charge equally.   
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First, we discharged each battery using three 10-Ohms 

resistors connected in parallel.  Each battery was dis-

charged to 9.7V.   We did not want to go below the minimum 

battery voltage of 9.6V.  Then, we disconnected the load 

from the battery and connected the solar panel.   

The recommended charging rate is C/3, which represents 

1/3 of the capacity of the battery.  This means that if the 

capacity was 1200mAh, then charging current rate has to be 

400mAh, and it should last 3 hours approximately to fully 

charge the battery.  Nevertheless, our solar panel and MPPT 

were providing around 1A of charging current, which meant 

that our charging rate was about 1C.  

In all three tests, it took about 1 hour and 20 min-

utes for the batteries to reach peak voltage of 12.47V, 

12.44V, and 12.45V.  We used the LED indicators on the bal-

ancer charger to determine whether the battery was fully 

charged or not.  This occurred when the charging current 

reached 9% of the rated current of each battery.  We also 

took voltage readings at the end of the test to verify that 

the battery reached full charge status.  The MPPT also in-

dicated when the battery reached full charge status when 

the green LED status indicator stopped flashing.  In Table 

36 we can see the time it took to recharge each battery. 

Table 36.   Li-po Battery Recharge Time. 

Battery Initial Voltage Final Voltage Time 
Battery #1 9.7V 12.47V 84-min 
Battery #2 9.7V 12.44V 80-min 
Battery #3 9.7V 12.45V 88-min 

 

Since our charging rate current was higher than recom-

mended, it shortened the charging time compared to other 
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tests conducted in similar research [5].  In the end, the 

solar panel successfully charged the two Li-po batteries. 

8. Specific Energy Calculation 

Our intent was to leave the reader of this thesis re-

search with the idea of how much of a specific energy per 

weight ratio should be needed to achieve longer flight 

time. 

First, we considered the energy consumed by the Raven 

with its original payload.  Since, the weight of the Raven 

was 4.2-lbs (1.9Kg) and the energy used in 1 hour and 50 

minutes at 100% and 55% throttle configuration was 72.08Wh, 

we obtained a ratio of 0.038, as seen in equation 6.6. 
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0.038
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    (5.10) 

Second, we then considered the same energy consumed by 

the Raven with the original payload, but we included the 

modification in support structure, i.e., the modified wing.  

In this case, since the flight time was 2 hours and 4 min-

utes, the energy consumed was actually lower (69.28Wh).  

Moreover, the weight of the modified wing was also heavier 

by 232g. As a result, the specific energy per weight ratio 

turned out to be 0.032, as seen in equation 6.7. 
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  Finally, we obtained a third specific energy per 

weight ratio that included the energy consumed by the Raven 

with the payload, modified wing, and the solar modification 

circuit.  However, in equation 6.8, we noticed that the en-

ergy used by the Raven was zero because it flew 3 hours, 
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i.e., 1 hour and 10 minutes longer without using a single 

Watt hour of energy from the battery. 
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  With this calculation, we could say that the lower 

the specific energy per weight ratio is, the more flight 

time improvement we can get.  Nevertheless, this is true 

only if the added weight includes support structure that 

could improve the lift and/or solar modification that could 

reduced the amount of energy used from the battery. 

I. FLIGHT TEST RESULTS 

Unfortunately, we were not able to test our design 

during flight due to a lack of Raven assets authorized to 

fly with the solar wing.  However, the next opportunity to 

proof-our concept flight would be in November 2010 at Camp 

Roberts, during the next CBE Conference. 

J. COST ESTIMATE 

The amount of money spent on solar cells and other 

components necessary to conduct this research was only a 

small fraction of the tag price for a single Raven UAV, 

which is about $35,000.00.  A breakdown of the money spent 

on this project is described in Table 37. 
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Table 37.   Solar Modification Cost. 

   Minimum Purchase Order Expenditure per Unit 

Item Description 
Unit of 
Issue Qty Price Qty Used Cost 

CIGS Solar Cells (19 cells per string) String  50 $5,000.00 1 $100.00 

Boost MPPT Charge Controller EA 1 $255.00 1 $255.00 

Balancer Charger EA 1 $29.95 1 $29.95 

Carpet Protection Film Roll 1 $45.99 1 $45.99 

Connector EA 1 $1.99 1 $1.99 

Wiring Spool 1 $6.00 1 $6.00 

Copper Conductor Tape Roll 1 $25.86 1 $25.86 

Miscellaneous         $50.00 

        Subtotal $514.79 

Labor and Assembly         $500.00 

        Total $1,014.79 

 

Global Solar Energy Inc., the manufacturer of CIGS 

TFPV cells, could not sell individual strings.  Therefore, 

we were required to purchase a minimum order of 50 strings.  

Nonetheless, we calculated that the entire solar modifica-

tion to the Raven RQ-11B could cost around $1,000.00.  This 

represented only 3% of the cost of a single Raven asset, 

which made this research cost effective. 

In this estimate, we did not include the cost for the 

modification of the wing, since it was modified by the me-

chanical engineers of the Naval Weapons Center in China 

Lake, California. 
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VII.  CONCLUSIONS 

In this thesis research, we looked at the entire Raven 

RQ-11B UAV Program and examined the benefits as well as the 

limitations provided to ground forces fighting in urban 

terrain. Throughout this research we examined the begin-

nings of the Raven UAV, different prototypes built, system 

configuration and capabilities, cost per unit, training, 

etc.  We intended to give the reader a good appreciation of 

the potential and incredible advantages that this particu-

lar unmanned aerial vehicle gives to the military.  

Next, we briefly submerged ourselves into the intri-

cate world of solar cells; specifically, CIGS solar cells.  

We wanted to get a better understanding of their operation, 

structure, factors that affect their performance, and the 

advantages of using thin film photovoltaic cells.  We dem-

onstrated that in order to achieve the highest improvement 

in battery endurance, we ought to seek the highest effi-

ciency CIGS TFPV cells available in today’s market.  We 

were fortunate to find 13% efficient CIGS cells.  

Additionally, we spent some time looking into other 

power electronic devices that required to be integrated in-

to our research.  We examined their operation, functional-

ity, characteristics, but for the most part, we focused on 

how they contributed to give us the maximum output power 

from our solar panel.  

The design and assembly of our solar wing panel was, 

perhaps, the pinnacle of this research.  It was essential 

to come up with the most efficient solar cell arrangement 

to cover every single area available on the wing.  Such ar-
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rangement entailed minimizing labor by reducing the number 

of cuts and connections, and maximizing the output power. 

Here, we also explained the challenges encountered when 

working and handling uncovered CIGS TFPV cells.  Although 

it was a tedious and time consuming process, it was a nec-

essary step to avoid damaging the cells and adding more 

weight to the aircraft.  Furthermore, we discussed the in-

corporation of additional power electronic devices neces-

sary to obtain the power required to charge the battery 

while on flight. 

To proof our concept, we conducted tests at different 

throttle configurations to match the normal operation of 

the Raven UAV during regular missions.  Our tests were con-

ducted inside our laboratory, initially, and then outdoors 

to measure the improvements obtained from the solar panel.  

We made an effort to take readings at different locations 

where the average energy input was higher.   

In this thesis, we also performed a cost benefit anal-

ysis to determine how costly it could be to make this solar 

modification.  We determined that the entire modification 

would cost $1,000.00, which represented only 3% of the cost 

for a single asset. 

In the end, although the weather conditions where our 

tests were conducted were not favorable for this type of 

research, we observed a considerable endurance improvement 

by using solar cells on the wing of the Raven UAV, which 

validated our thesis.  A summary of the results obtained is 

shown in Table 38. 
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Table 38.    Summary of Testing Results. 

100% - 55% Throttle Test 

 
Energy IN 
from SP Actual Time Improvement 

Raven w/o SP 0Wh 1h 53min 0% 

Raven w/SP Test 1 13.55Wh 3h 12min 70% 

Raven w/SP Test 2 12.70Wh 3h 5min 64% 

100%-65% Throttle Test 

Raven w/o SP 0Wh 1h 34min 0% 

Raven w/SP Test 1 11.94Wh 1h 53min 20% 

Raven w/SP Test 2 10.62 2h 06min 34% 

100% - 70% Throttle Test 

Raven w/o SP 0Wh 1h 26min 0% 

Raven w/SP Test 1 12.55 1h 58min 37% 

 

In Table 38, we compared the different tests performed 

with the solar panel to the tests conducted without the so-

lar modification at those specific throttle configurations.  

We noticed that under low average energy input conditions 

we obtained somewhere around 70% improvement when operating 

between 100% and 55% throttle, and around 40% when operat-

ing at the other throttle configurations.  We truly be-

lieved that more tests are needed at higher average energy 

input levels to observe improvements equal or greater than 

100% at any throttle setting.  

A. RECOMMENDATIONS 

Although this thesis has proven that the application 

of CIGS TFPV improves the flight endurance of the Raven 

UAV, there is more that could be done to optimize our find-

ings. 
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1. Eliminate Boost Converter 

Since the voltage provided by the solar panel was low-

er than the voltage of the battery, it was imperative to 

find a DC-DC converter that would step up the voltage from 

the solar panel to 25.2V to charge the battery.  To our 

benefit, the MPPT that we chose came with a boost converter 

built-in on the same circuit.  The efficiency of this de-

vice, according to the manufacturer [41], was 96% to 98%; 

hence, it loses between 4% to 2% while stepping up the vol-

tage.  Adding more cells to the solar panel would increase 

the voltage to a point where no power converter would be 

required, and thus, improving the efficiency of the MPPT. 

To do this, the area of the solar cells would need to 

be shorter.  However, making the area of the solar cells 

shorter also implies that the output current would be re-

duced.  Moreover, it becomes more challenging since there 

are not that many center conductors available on top of the 

solar cell that could be used to connect them with one an-

other.  Therefore, the cell would have to be cut around the 

center conductors to ensure that each cell would have a 

place to connect to another cell.  Unfortunately, many so-

lar cells would be sacrificed to make others work, result-

ing in wasteful use of solar cells and added cost to the 

modification.  Without a doubt, it is a difficult task, but 

it is also one that could bring positive results. 

2. Solar Design for Original Wing  

The advantage of having a modified wing is that it 

provides more room to place more solar cells.  However, 

there is also a big disadvantage that most battalion com-

manders in the battlefield are not willing to take.  Un-



 121

less, mechanical engineers find a way to make the modified 

wing a man-portable item, it would not be accepted by op-

erational units in the field.  Thus, there still a need to 

apply this concept on the original size wing, which has a 

smaller area.  Once again, for this case the area of the 

solar cells would also need to be shorter to increase the 

voltage of the solar panel.  In addition it would be neces-

sary to make each detachable piece of the center wing and 

the horizontal stabilizer a separate solar panel with the 

same number of solar cells connected in series, and the pa-

nels connected in parallel.  This would give the same out-

put voltage, but it would also increase the amount of cur-

rent. 

3. New Technology CIGS and Power Electronics 

Technology is constantly moving at a fast rate.  In 

the area of CIGS TFPV cells, huge improvements in effi-

ciency are being observed every day.  As explained in Chap-

ter III, up to 20.1% efficient CIGS cells have been at-

tained [19].  This is an indication that in the near future 

the manufacturing industry would be able to produce higher 

efficient cells that would allow us to obtain better re-

sults on applications similar to the one conducted on this 

thesis.  Similarly, power electronic devices, such as the 

ones used in this thesis research, would be available in 

smaller dimensions and perhaps with higher efficiency.  

This is the case of the SPV1020 boost converter from 

STMicroelectronics, which is a single chip that uses a com-

bination of a DC-DC converter with a digital logic circuit 

to perform as an MPPT.  This device is designed to increase 

the efficiency of solar panels [49].  
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